scholarly journals Radio morphology–accretion mode link in Fanaroff–Riley type II low-excitation radio galaxies

2020 ◽  
Vol 493 (3) ◽  
pp. 4355-4366 ◽  
Author(s):  
D Macconi ◽  
E Torresi ◽  
P Grandi ◽  
B Boccardi ◽  
C Vignali

ABSTRACT Fanaroff–Riley type II (FR II) low-excitation radio galaxies (LERGs) are characterized by weak nuclear excitation on parsec-scales and properties typical of powerful FR IIs (defined as high-excitation radio galaxies, hereafter HERGs/BLRGs) on kiloparsec-scales. Since a link between the accretion properties and the power of the produced jets is expected both from theory and observations, their nature is still debated. In this work, we investigate the X-ray properties of a complete sample of 19 FR II-LERGs belonging to the 3CR catalogue, exploiting Chandra and XMM–Newton archival data. We also analyse 32 FR II-HERGs/BLRGs with Chandra data as a control sample. We compared FR II-LERG and FR II-HERG/BLRG X-ray properties and optical data available in literature to obtain a wide outlook of their behaviour. The low accretion rate estimates for FR II-LERGs, from both X-ray and optical bands, allow us to firmly reject the hypothesis as they are the highly obscured counterpart of powerful FR II-HERGs/BLRGs. Therefore, at least two hypothesis can be invoked to explain the FR II-LERG nature: (i) they are evolving from classical FR IIs because of the depletion of accreting cold gas in the nuclear region, while the extended radio emission is the heritage of a past efficiently accreting activity; and (ii) they are an intrinsically distinct class of objects with respect to classical FR Is/FR IIs. Surprisingly, in this direction, a correlation between accretion rates and environmental richness is found in our sample. The richer the environment is, the more inefficient is the accretion. In this framework, the FR II-LERGs are intermediate between FR Is and FR II-HERGs/BLRGs both in terms of accretion rate and environment.

2021 ◽  
Vol 503 (2) ◽  
pp. 2973-2978
Author(s):  
G A Carvalho ◽  
S Pilling

ABSTRACT In this work, we analyse soft X-ray emission due to mass accretion on to compact stars and its effects on the time-scale to reach chemical equilibrium of eventual surrounding astrophysical ices exposed to that radiation. Reaction time-scales due to soft X-ray in water-rich and pure ices of methanol, acetone, acetonitrile, formic acid, and acetic acid were determined. For accretion rates in the range $\dot{m}=10^{-12}\!-\!10^{-8}\,{\rm M}_\odot$ yr−1 and distances in the range 1–3 LY from the central compact objects, the time-scales lie in the range 10–108 yr, with shorter time-scales corresponding to higher accretion rates. Obtained time-scales for ices at snow-line distances can be small when compared to the lifetime (or age) of the compact stars, showing that chemical equilibrium could have been achieved. Time-scales for ices to reach chemical equilibrium depend on X-ray flux and, hence, on accretion rate, which indicates that systems with low accretion rates may not have reached chemical equilibrium.


2014 ◽  
Vol 10 (S312) ◽  
pp. 139-140
Author(s):  
Fu-Guo Xie

AbstractSignificant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.


2020 ◽  
Vol 497 (2) ◽  
pp. 2163-2174
Author(s):  
T Pasini ◽  
M Brüggen ◽  
F de Gasperin ◽  
L Bîrzan ◽  
E O’Sullivan ◽  
...  

ABSTRACT Our understanding of how active galactic nucleus feedback operates in galaxy clusters has improved in recent years owing to large efforts in multiwavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy groups, which have shallower gravitational potentials. In this work, using very deep Very Large Array and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the intra-cluster medium could be less suppressed by active galactic nucleus heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Helei Liu ◽  
Masa-aki Hashimoto ◽  
Guoliang Lü ◽  
Yasuhide Matsuo ◽  
Dehua Wen ◽  
...  

Abstract As some neutron star transients require an additional unknown heat source (referred to as “shallow heating”) to explain their high temperatures at the beginning of quiescence, we investigate the effect of shallow heating as well as compressional heating on the thermal state of transiently accreting neutron stars with the use of evolutionary calculations in the present work. Through comparing our theoretical predictions of the equilibrium redshifted luminosities $(L_{\gamma}^{\infty})$ produced by both deep crustal heating and shallow heating/compressional heating for different time-averaged mass-accretion rates $\langle\dot{M}\rangle$ with 35 updated observations of soft X-ray transients, the results show that both shallow heating and compressional heating make significant contributions to the equilibrium redshifted luminosity. The hotter sources (XTE J1701, MAXI J0556, EXO 0748, Aql X-1 etc.) with higher accretion rates are more likely to be explained with the effect of shallow heating or compressional heating. In addition, for a proper shallow heat $q_\mathrm{sh}$ and mass-accretion rate $\dot{M}$, the effect of shallow heating could be simulated by compressional heating.


1980 ◽  
Vol 5 ◽  
pp. 695-697
Author(s):  
E. D. Feigelson ◽  
E. J. Schreier

We would like to present early results from the EINSTEIN X-ray Observatory on three radio galaxies: Centaurus A, NGC 315 = DW0055+30, and Cygnus A = 3C405. We hope to demonstrate that imaging X-ray astronomy can provide important insights into the physics and environment of radio galaxies and their extended radio components.NGC 5128, the parent galaxy of the double-double radio source Centaurus A, is the nearest radio galaxy, providing the best testing ground for high resolution X-ray studies. The X-ray morphology has proved to be rich and varied. We detect four distinct components to the X-ray emission: (1) the strong, compact nucleus detected by earlier satellites; (2) extended emission around the nucleus; (3) emission from the inner radio lobes; and (4) a unique X-ray jet between the nucleus and the NE radio lobe. A detailed presentation of these observations can be found in Schreier et al. (1979).


2020 ◽  
Vol 495 (1) ◽  
pp. 278-284 ◽  
Author(s):  
Caner Ünal ◽  
Abraham Loeb

ABSTRACT The Fundamental Plane (FP) of black hole (BH) activity in galactic nuclei relates X-ray and radio luminosities to BH mass and accretion rate. However, there is a large scatter exhibited by the data, which motivated us for a new variable. We add BH spin as a new variable and estimate the spin dependence of the jet power and disc luminosity in terms of radio and X-ray luminosities. We assume the Blandford–Znajek process as the main source of the outflow, and find that the jet power depends on BH spin stronger than quadratically at moderate and large spin values. We perform a statistical analysis for 10 active galactic nuclei (AGNs) which have sub-Eddington accretion rates and whose spin values are measured independently via the reflection or continuum-fitting methods, and find that the spin-dependent relation describes the data significantly better. This analysis, if supported with more data, could imply not only the spin dependence of the FP relation, but also the Blandford–Znajek process in AGN jets.


2018 ◽  
Vol 618 ◽  
pp. A55 ◽  
Author(s):  
P. C. Schneider ◽  
H. M. Günther ◽  
J. Robrade ◽  
J. H. M. M. Schmitt ◽  
M. Güdel

Classical T Tauri stars (CTTSs) accrete matter from the inner edge of their surrounding circumstellar disks. The impact of the accretion material on the stellar atmosphere results in a strong shock, which causes emission from the X-ray to the near-infrared (NIR) domain. Shock velocities of several 100 km s−1 imply that the immediate post shock plasma emits mainly in X-rays. Indeed, two X-ray diagnostics, the so-called soft excess and the high densities observed in He-like triplets, differentiate CTTSs from their non-accreting siblings. However, accretion shock properties derived from X-ray diagnostics often contradict established ultraviolet (UV)–NIR accretion tracers and a physical model simultaneously explaining both, X-ray and UV–NIR accretion tracers, is not yet available. We present new XMM-Newton and Chandra grating observations of the CTTS T Tauri combined with UV and optical data. During all epochs, the soft excess is large and the densities derived from the O VII and Ne IX He-like triplets are compatible with coronal densities. This confirms that the soft X-ray emission cannot originate in accretion funnels that carry the bulk of the accretion rate despite T Tauri’s large soft excess. Instead, we propose a model of radially density stratified accretion columns to explain the density diagnostics and the soft excess. In addition, accretion rate and X-ray luminosity are inversely correlated in T Tauri over several epochs. Such an anti-correlation has been observed in samples of stars. Hence the process causing it must be intrinsic to the accretion process, and we speculate that the stellar magnetic field configuration on the visible hemisphere affects both the accretion rate and the coronal emission, eventually causing the observed anti-correlation.


1984 ◽  
Vol 277 ◽  
pp. 115 ◽  
Author(s):  
G. Fabbiano ◽  
G. Trinchieri ◽  
M. Elvis ◽  
L. Miller ◽  
M. Longair
Keyword(s):  

2020 ◽  
Vol 500 (1) ◽  
pp. 215-231
Author(s):  
Ruth A Daly

ABSTRACT Mass accretion rates in dimensionless and physical units, and efficiency factors describing the total radiant luminosity of the disc and the beam power of the outflow are obtained and studied here for samples of black hole systems with outflows. Four samples of sources including 576 LINERs, 100 classical double (FRII) radio sources, 80 relatively local AGN, and 103 measurements of four stellar mass X-ray binary systems, referred to as Galactic Black Holes (GBHs), are included in the study. All of the sources have highly collimated outflows leading to compact radio emission or powerful extended (FRII) radio emission. The properties of each of the full samples are explored, as are those of the four individual GBH, and sub-types of the FRII and local AGN samples. Source types and sub-types that have high, medium, and low values of accretion rates and efficiency factors are identified and studied. A new efficiency factor that describes the relative impact of black hole spin and mass accretion rate on the beam power is defined and studied, and is found to provide a new and interesting diagnostic. Mass accretion rates for 13 sources and efficiency factors for 6 sources are compared with values obtained independently, and indicate that similar values are obtained with independent methods. The mass accretion rates and efficiency factors obtained here substantially increase the number of values available, and improve our understanding of their relationship to source types. The redshift dependence of quantities is presented and the impact on the results is discussed.


2006 ◽  
Vol 2 (S238) ◽  
pp. 341-342
Author(s):  
Xian Chen ◽  
Fukun Liu

AbstractBoth the X-shaped radio galaxies and double-double radio galaxies (DDRGs) are suggested in the literature to be due to the binary-accretion disk interaction or to the coalescence of SMBBHs. These models suggest some relationship between the two types of radio sources. In this paper, we collected data from literatures for two samples of X-shaped and double-double radio galaxies together with a control sample of FRII radio galaxies and statistically investigate their properties.We find that the wings of X-shaped radio galaxies and the outer and inner lobes of DDRGs tend to be perpendicular to the major axis of the host galaxy (or dust structures), while the active lobes orient randomly. Both X-shaped and double-double radio galaxies are low luminous FRII or FRI/FRII transitional radio sources with the similar dimensionless accretion rate ṁ ∼ 0.01, which is about the transitional accretion rate given in the literature.All the statistic results can be reconciled if there is an evolutionary relationship between X-shaped and double-double radio galaxies, in the sense that X-shaped radio galaxies may be due to the interaction of active SMBBHs and accretion disk and DDRGs due to the removal of inner disk region and the coalescence of SMBBHs.


Sign in / Sign up

Export Citation Format

Share Document