scholarly journals Pulsation among TESS A and B stars and the Maia variables

2020 ◽  
Vol 493 (4) ◽  
pp. 5871-5879
Author(s):  
L A Balona ◽  
D Ozuyar

ABSTRACT Classification of over 50 000 TESS stars in sectors 1–18 has resulted in the detection of 766 pulsating main-sequence B stars as well as over 5000 δ Scuti, 2300 γ Doradus, and 114 roAp candidates. Whereas it has been assumed that high-frequency pulsations among B-type main-sequence stars are confined to the early B-type β Cephei stars, the observations indicate that high frequencies are to be found over the whole B-star range, eventually merging with δ Scuti stars. The cool B stars pulsating in high frequencies are called Maia variables. It is shown that Maia variables are not rapidly rotating and thus cannot be β Cephei pulsators that appear to have lower temperatures due to gravity darkening. In the region where β Cephei variables are found, the proportion of pulsating stars is larger and amplitudes are higher and a considerable fraction pulsate in a single mode and low rotation rate. There is no distinct region of slowly pulsating B stars (SPB stars). Stars pulsating solely in low frequencies are found among all B stars. At most, only one-third of B stars appear to pulsate. These results, as well as the fact that a large fraction of A and B stars show rotational modulation, indicate a need for a revision of current ideas regarding stars with radiative envelopes.

1994 ◽  
Vol 162 ◽  
pp. 151-152
Author(s):  
J. Denoyelle ◽  
C. Aerts ◽  
C. Waelkens

The double cluster h andxPersei is one of the richest clusters containing early-B stars, and therefore is important for observational and theoretical studies on the fundamental parameters of massive stars. The colour-magnitude diagram of the double cluster shows an important scatter (see Figure 1). It has long been known thathandxPersei are extremely rich in Be stars (Slettebak 1968). Our previous contention (Waelkens et al. 1990) that the large-amplitude variable stars we discovered are also Be stars, could be confirmed for a few objects. Rotation velocities for stars inhandxPersei are usually high, which is not surprising in view of the large fraction of Be stars.


2020 ◽  
Vol 499 (4) ◽  
pp. 5508-5526
Author(s):  
S K Sahoo ◽  
A S Baran ◽  
S Sanjayan ◽  
J Ostrowski

ABSTRACT We report the results of our search for pulsating subdwarf B stars in full frame images, sampled at 30 min cadence and collected during Year 1 of the TESS mission. Year 1 covers most of the southern ecliptic hemisphere. The sample of objects we checked for pulsations was selected from a subdwarf B stars data base available to public. Only two positive detections have been achieved, however, as a by-product of our search we found 1807 variable objects, most of them not classified, hence their specific variability class cannot be confirmed at this stage. Our preliminary discoveries include: 2 new subdwarf B (sdB) pulsators, 26 variables with known sdB spectra, 83 non-classified pulsating stars, 83 eclipsing binaries (detached and semidetached), a mix of 1535 pulsators and non-eclipsing binaries, two novae, and 77 variables with known (non-sdB) spectral classification. Among eclipsing binaries we identified two known HW Vir systems and four new candidates. The amplitude spectra of the two sdB pulsators are not rich in modes, but we derive estimates of the modal degree for one of them. In addition, we selected five sdBV candidates for mode identification among 83 pulsators and describe our results based on this preliminary analysis. Further progress will require spectral classification of the newly discovered variable stars, which hopefully include more subdwarf B stars.


2020 ◽  
Vol 493 (4) ◽  
pp. 5382-5388
Author(s):  
Simon J Murphy ◽  
Nicholas H Barbara ◽  
Daniel Hey ◽  
Timothy R Bedding ◽  
Ben D Fulcher

ABSTRACT Measuring phase modulation in pulsating stars has proven to be a highly successful way of finding binary systems. The class of pulsating main-sequence A and F variables, known as δ Scuti stars consists of particularly good targets for this, and the Kepler sample of these has been almost fully exploited. However, some Keplerδ Scuti stars have incorrect temperatures in stellar properties catalogues, and were missed in previous analyses. We used an automated pulsation classification algorithm to find 93 new δ Scuti pulsators among tens of thousands of F-type stars, which we then searched for phase modulation attributable to binarity. We discovered 10 new binary systems and calculated their orbital parameters, which we compared with those of binaries previously discovered in the same way. The results suggest that some of the new companions may be white dwarfs.


2019 ◽  
Vol 485 (3) ◽  
pp. 3457-3469 ◽  
Author(s):  
L A Balona ◽  
G Handler ◽  
S Chowdhury ◽  
D Ozuyar ◽  
C A Engelbrecht ◽  
...  

Abstract Light curves and periodograms of 160 B stars observed by the Transiting Exoplanet Survey Satellite (TESS) space mission and 29 main-sequence B stars from Kepler and K2 were used to classify the variability type. There are 114 main-sequence B stars in the TESS sample, of which 45 are classified as possible rotational variables. This confirms previous findings that a large fraction (about 40 per cent) of A and B stars may exhibit rotational modulation. Gaia DR2 parallaxes were used to estimate luminosities, from which the radii and equatorial rotational velocities can be deduced. It is shown that observed values of the projected rotational velocities are lower than the estimated equatorial velocities for nearly all the stars, as they should be if rotation is the cause of the light variation. We conclude that a large fraction of main-sequence B stars appear to contain surface features which cannot likely be attributed to abundance patches.


2013 ◽  
Vol 9 (S301) ◽  
pp. 89-92 ◽  
Author(s):  
Juan Carlos Suárez ◽  
Antonio García Hernández ◽  
Andrés Moya ◽  
Carlos Rodrigo ◽  
Enrique Solano ◽  
...  

AbstractWe study the theoretical properties of the regular spacings found in the oscillation spectra of δ Scuti stars. A linear relation between the large separation and the mean density is predicted to be found in the low-frequency domain (i.e. radial orders spanning from 1 to 8, approximately) of the main-sequence δ Scuti stars' oscillation spectrum. This implies an independent direct measure of the average density of δ Scuti stars, analogous to that of the Sun, and places tight constraints on the mode identification and hence on the stellar internal structure and dynamics, and allows a determination the radii of planets orbiting around δ Scuti stars with unprecedented precision. This opens the way for studying the evolution of regular patterns in pulsating stars, and its relation to stellar structure and evolution.


2002 ◽  
Vol 185 ◽  
pp. 306-318
Author(s):  
M.J. Goupil ◽  
S. Talon

The current state of seismology of δ Scuti stars is reviewed with particular emphasis on seismic signatures of the extension of their mixed central region and of rotation. We refer also to Goupil et al. (2000) and more generally to Breger & Montgomery (2000) for more details.δ Scuti stars are population I pulsating stars with spectral type A-early F, located on or near the main sequence. They are found in the lower part of the classical instability strip in a HR diagram (Fig. 1). Masses range from ∼ 1.5M⊙ to ∼ 2.5M⊙ and δ Scuti stars are either in a stage of H-core or H-shell burning. On the main sequence, the high temperature sensitivity of the dominant CNO cycle causes a large convective core to develop, which later shrinks leaving behind a gradient ∇μ in the mean molecular weight.


1997 ◽  
Vol 189 ◽  
pp. 343-348 ◽  
Author(s):  
N. Langer ◽  
A. Heger ◽  
J. Fliegner

Massive stars are rapid rotators. Equatorial rotation velocities span the range vrot = 100–400 km s−1, with B stars rotating closest to their break-up speed vcrit (Howarth et al. 1997). During the last decade, many observations have revealed unusual surface abundances that may require additional internal mixing (beyond that of simple convection and overshooting) for their explanation, most important helium and nitrogen enrichment in main sequence O and B stars (Gies & Lambert 1992), in the SN 1987A progenitor (Fransson et al. 1989), and boron depletions in main sequence B stars (Venn et al. 1996). In particular the latter observations clearly point towards internal mixing and rule out a close binary origin of the abundance peculiarities (Fliegner et al. 1996). Altogether, the occurrence of some form of additional mixing responsible for altering the surface abundances in a large fraction, if not all massive stars appears to be beyond reasonable doubt, and mixing processes due to rotation are the most natural explanation.


2017 ◽  
Vol 14 (S339) ◽  
pp. 77-82
Author(s):  
L. A. Balona

AbstractNew observations of Kepler δ Scuti stars show that our understanding of pulsation in these stars is incomplete. A large fraction of A and B stars exhibit rotational modulation in light, suggesting that spots exist in stars with radiative envelopes. Flares are seen in some A stars, as may be expected if starspots are present. Differential rotation shear increases from M to F but decreases for A stars; it reaches a maximum among the γ Doradus variables. Current views of stars with radiative envelopes may need to be reviewed in the light of these observations.


1998 ◽  
Vol 11 (1) ◽  
pp. 349-349
Author(s):  
M. Breger

Reported mode changes in δ Scuti stars cna usually be explained by insufficient data to obtain multiperiodic solutions and by the effect of time-variable amplitudes. The extensive data on 4 CVn obtained by the Delta Scuti network are used to illustrate that the large changes in the appearance of the power spectra in the years from 1966 to 1996 can be ascribed to amplitude variability. The period changes of δ Scuti stars have been collected or redetermined from the available observations and are compared with values computed from evolutionary models. For the radial pulsators of Pop.I, the observations indicate (l/P)dP/dt values around 10−7 year−1 with equal distribution between period increases and decreases. The evolutionary models, on the other hand, predict that the vast majority should show increasing periods a factor of about 10 smaller than observed. Arguments are given why the rate of evolution for these relatively unevolved stars cannot yet be deduced from the observed period changes.


2008 ◽  
Vol 4 (S259) ◽  
pp. 389-390
Author(s):  
Swetlana Hubrig ◽  
M. Briquet ◽  
P. De Cat ◽  
M. Schöller ◽  
T. Morel ◽  
...  

AbstractWe present the results of the continuation of our magnetic survey with FORS 1 at the VLT of a sample of B-type stars consisting of confirmed or candidate β Cephei stars and Slowly Pulsating B stars. Roughly one third of the studied β Cephei stars have detected magnetic fields. The fraction of magnetic Slowly Pulsating B and candidate Slowly Pulsating B stars is found to be higher, up to 50%. We find that the domains of magnetic and non-magnetic pulsating stars in the H-R diagram largely overlap, and no clear picture emerges as to the possible evolution of the magnetic field across the main sequence.


Sign in / Sign up

Export Citation Format

Share Document