high temperature sensitivity
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 18)

H-INDEX

12
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2294
Author(s):  
Silvia Lajewski ◽  
Annika Mauch ◽  
Kalman Geiger ◽  
Christian Bonten

Presently, almost every industry uses conventional plastics. Its production from petroleum and extensive plastic pollution cause environmental problems. More sustainable alternatives to plastics include bioplastics such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), which is produced by bacteria and is biodegradable even in seawater. High temperature sensitivity as well as massive thermal degradation cause difficulties during the processing of PHBV. The aim of this work is to create a detailed rheological characterization and master curves to gain deeper knowledge about the material and its processing parameters. The rheological characterization was performed with frequency sweeps in the range of 0.1 rad/s to 628 rad/s and time sweeps over 300 s. Creating master curves at the reference temperature of 180 °C with the software IRIS delivers Carreau and Arrhenius parameters. These parameters allow for a calculation of the master curves for all other temperatures by means of the temperature shift factor. Moreover, the rheological measurements reveal a minimum rheological measurement temperature of 178 °C and a surprisingly high activation energy of 241.8 kJ/mol.


2021 ◽  
Vol 13 (7) ◽  
pp. 1400
Author(s):  
Ruonan Chen ◽  
Liangyun Liu ◽  
Xinjie Liu

Photosynthesis and its sensitivity to the changing environment in alpine regions are of great significance to the understanding of vegetation–environment interactions and other global ecological processes in the context of global change, while their variations along the elevation gradient remain unclear. Using solar-induced chlorophyll fluorescence (SIF) derived from satellite observations, we discovered an increase in solar-induced fluorescence yield (SIFyield) with rising elevation in Tibetan meadows in the summer, related to the altitudinal variation in temperature sensitivity at both seasonal and interannual scales. Results of the altitudinal patterns of SIFyield demonstrated higher temperature sensitivity at high altitudes, and the sensitivity at the interannual scale even exceeds that at seasonal scale when the elevation reaches above 4700 m. This high-temperature sensitivity of SIFyield at high altitudes implies potential adaptation of alpine plants and also indicates that changes in photosynthesis-related physiological functions at high altitudes should receive more attention in climate change research. The altitudinal SIFyield patterns revealed in this study also highlight that variations in temperature sensitivity should be considered in models, otherwise the increasing trend of SIFyield observations can never be discovered in empirical simulations.


2021 ◽  
Vol 183 ◽  
pp. 104343
Author(s):  
Yuanyuan Wang ◽  
Dechang Sheng ◽  
Ping Zhang ◽  
Xin Dong ◽  
Ye Yan ◽  
...  

Author(s):  
Z. Mutsafi ◽  
K. Shimanovich ◽  
V. Kairys ◽  
R. Shima-Edelstein ◽  
Y. Roizin ◽  
...  

Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 735-741
Author(s):  
Guangsheng Deng ◽  
Linying Fang ◽  
Jun Yang ◽  
Zhiping Yin ◽  
Yong Fang

Abstract This article proposes a metamaterial-based temperature sensor with high sensitivity using the thermally tunable liquid metal of mercury. The response of the metamaterial at different temperatures is theoretically investigated. In the merit of the temperature-sensitive thermal expanding of the embedded mercury resonant structure, different absorption peak frequencies can be observed at different temperatures, which enables the proposed metamaterial capability of temperature sensing. The numerical simulations show that the temperature sensitivity of the proposed sensor can reach up to 27.64 MHz/°C within the range of 0–21.8°C. The calculated electric field and surface current distributions illustrate that the high sensitivity is originated from the dual-dipole mode of the resonant structure. Meanwhile, the dependence of the structural dimensions on temperature sensitivity is discussed to optimize the sensor design. The proposed strategy paves a new way for developing temperature sensors with high sensitivity.


Fibers ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 20 ◽  
Author(s):  
Sepehr Saedi ◽  
Seref Oruc

The current study investigates the effects of Fiber Reinforce Polymer (FRP) additive on the performance of Stone Mastic Asphalt (SMA) mixtures with SBS and Viatop Premium additives. The asphalt mixture used in the current study included SBS (Styrene-Butadiene-Styrene) additive modified at the rate of 5% according to the necessary preliminary studies, and some SMA mixture modified by adding FRP (Fiber Reinforced Polymers) additive prepared in dimensions of 5 cm in different proportions (0.3%, 0.5%, 0.7% and 0.9%). The mechanical properties of the mixtures were investigated, and the findings revealed that the SMA mixture; prepared by adding FRP additive, SBS modified bitumen, and Viatop Premium additive; increased the rutting, aging resistance and elasticity of SMAs. Moreover, load spread ability and fatigue life revealed an increase, whereas high temperature sensitivity and tendency to crack at low temperatures decreased throughout the study. The FRP contribution rate that improves the performance characteristics of the SMA mixture to the highest level was found to be 0.7%.


Sign in / Sign up

Export Citation Format

Share Document