scholarly journals The Sheet of Giants: Unusual properties of the Milky Way’s immediate neighbourhood

2020 ◽  
Vol 494 (2) ◽  
pp. 2600-2617 ◽  
Author(s):  
Maria K Neuzil ◽  
Philip Mansfield ◽  
Andrey V Kravtsov

ABSTRACT We quantify the shape and overdensity of the galaxy distribution in the ‘Local Sheet’ within a sphere of R = 8 Mpc and compare these properties with the expectations of the ΛCDM model. We measure ellipsoidal axis ratios of c/a ≈ 0.16 and b/a ≈ 0.79, indicating that the distribution of galaxies in the Local Volume can be approximated by a flattened oblate ellipsoid, consistent with the ‘sheet’-like configuration noted in previous studies. In contrast with previous estimates that the Local Sheet has a density close to average, we find that the number density of faint and bright galaxies in the Local Volume is ≈1.7 and ≈5.2 times denser, respectively, than the mean number density of galaxies of the same luminosity. Comparison with simulations shows that the number density contrasts of bright and faint galaxies within 8 Mpc alone make the Local Volume a ≈2.5 σ outlier in the ΛCDM cosmology. Our results indicate that the cosmic neighbourhood of the Milky Way may be unusual for galaxies of similar luminosity. The impact of the peculiar properties of our neighbourhood on the properties of the Milky Way and other nearby galaxies is not yet understood and warrants further study.

2000 ◽  
Vol 17 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Renée C. Kraan-Korteweg ◽  
Sebastian Juraszek

AbstractDue to the foreground extinction of the Milky Way, galaxies become increasingly faint as they approach the Galactic Equator creating a ‘zone of avoidance’ (ZOA) in the distribution of optically visible galaxies of about 25%. A ‘whole-sky’ map of galaxies is essential, however, for understanding the dynamics in our local Universe, in particular the peculiar velocity of the Local Group with respect to the Cosmic Microwave Background and velocity flow fields such as in the Great Attractor (GA) region. The current status of deep optical galaxy searches behind the Milky Way and their completeness as a function of foreground extinction will be reviewed. It has been shown that these surveys—which in the mean time cover the whole ZOA (Figure 2)—result in a considerable reduction of the ZOA from extinction levels of AB =1m.0 (Figure 1) to AB =3m.0 (Figure 3). In the remaining, optically opaque ZOA, systematic HI surveys are powerful in uncovering galaxies, as is demonstrated for the GA region with data from the full sensitivity Parkes Multibeam HI survey (300°≤l≤332°, ∣b∣≤5°.5, Figure 4).


2014 ◽  
Vol 11 (S308) ◽  
pp. 173-180
Author(s):  
I. D. Karachentsev

AbstractI consider a sample of ‘Updated Nearby Galaxy Catalog’ that contains eight hundred objects within 11 Mpc. Environment of each galaxy is characterized by a tidal index Θ1 depending on separation and mass of the galaxy Main Disturber (=MD). The UNGC galaxies with a common MD are ascribed to its ‘suite’ and ranked according to their Θ1. Fifteen the most populated suites contain more than half of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M_B = -18 mag. The observational properties of galaxies accumulated in UNGC are used to derive orbital masses of giant galaxies via motions of their satellites. The average orbital-to-stellar mass ratio for them is MorbM* ≃ 30, corresponding to the mean local density of matter Ωm ≃ 0.09, i.e 1/3 of the global cosmic one. The dark-to-stellar mass ratio for the Milky Way and M31 is typical for other neighboring giant galaxies.


2020 ◽  
Vol 498 (3) ◽  
pp. 4205-4221
Author(s):  
N Vale Asari ◽  
V Wild ◽  
A L de Amorim ◽  
A Werle ◽  
Y Zheng ◽  
...  

ABSTRACT The H α and H β emission-line luminosities measured in a single integrated spectrum are affected in non-trivial ways by point-to-point variations in dust attenuation in a galaxy. This work investigates the impact of this variation when estimating global H α luminosities corrected for the presence of dust by a global Balmer decrement. Analytical arguments show that the dust-corrected H α luminosity is always underestimated when using the global H α/H β flux ratio to correct for dust attenuation. We measure this effect on 156 face-on star-forming galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey. At 1–2 kpc spatial resolution, the effect is small but systematic, with the integrated dust-corrected H α luminosity underestimated by 2–4 per cent (and typically not more than by 10 per cent), and depends on the specific star formation rate of the galaxy. Given the spatial resolution of MaNGA, these are lower limits for the effect. From Multi Unit Spectroscopic Explorer (MUSE) observations of NGC 628 with a resolution of 36 pc, we find the discrepancy between the globally and the point-by-point dust-corrected H α luminosity to be 14 ± 1 per cent, which may still underestimate the true effect. We use toy models and simulations to show that the true difference depends strongly on the spatial variance of the H α/H β flux ratio, and on the slope of the relation between H αluminosity and dust attenuation within a galaxy. Larger samples of higher spatial resolution observations are required to quantify the dependence of this effect as a function of galaxy properties.


2020 ◽  
Vol 497 (4) ◽  
pp. 4162-4182 ◽  
Author(s):  
Eugene Vasiliev ◽  
Vasily Belokurov

ABSTRACT We use the astrometric and photometric data from Gaia Data Release 2 and line-of-sight velocities from various other surveys to study the 3D structure and kinematics of the Sagittarius dwarf galaxy. The combination of photometric and astrometric data makes it possible to obtain a very clean separation of Sgr member stars from the Milky Way foreground; our final catalogue contains 2.6 × 105 candidate members with magnitudes G < 18, more than half of them being red clump stars. We construct and analyse maps of the mean proper motion and its dispersion over the region ∼30 × 12 deg, which show a number of interesting features. The intrinsic 3D density distribution (orientation, thickness) is strongly constrained by kinematics; we find that the remnant is a prolate structure with the major axis pointing at ∼45° from the orbital velocity and extending up to ∼5 kpc, where it transitions into the stream. We perform a large suite of N-body simulations of a disrupting Sgr galaxy as it orbits the Milky Way over the past 2.5 Gyr, which are tailored to reproduce the observed properties of the remnant (not the stream). The richness of available constraints means that only a narrow range of parameters produce a final state consistent with observations. The total mass of the remnant is $\sim \!4\times 10^8\, \mathrm{M}_\odot$, of which roughly a quarter resides in stars. The galaxy is significantly out of equilibrium, and even its central density is below the limit required to withstand tidal forces. We conclude that the Sgr galaxy will likely be disrupted over the next Gyr.


1993 ◽  
Vol 157 ◽  
pp. 349-353
Author(s):  
A. Poezd ◽  
A. Shukurov ◽  
D.D. Sokoloff

A nonlinear thin-disk galactic dynamo model based on α-quenching is proposed. Assuming that the mean helicity depends on the magnetic field strength averaged across the disk, we derive a universal form of nonlinearity in the radial dynamo equation. We discuss the evolution of the regular magnetic field in the Milky Way and the Andromeda Nebula. It is argued that the reversals of the regular magnetic field in the Galaxy are a relic inherited from the structure of the seed field. We also briefly discuss the role of the turbulent diamagnetism and the effects of galactic evolution on the dynamo.


1990 ◽  
Vol 139 ◽  
pp. 99-99
Author(s):  
K. Mattila

An analysis of fluctuations in the brightness of the Milky Way using the concept that interstellar matter occurs in the form of discrete clouds was first applied by Ambarzumian (1940, 1944). This theory was formulated in a general way and discussed in great detail in a series of papers by Chandrasekhar and Münch (1950a, 1950b, 1951, 1952), by Münch and Chandrasekhar (1952), and by Limber (1953). More recently Peters (1970) presented an analysis of this kind based on extensive photographic observational material. Although the influence of clumpiness of the dust distribution on the mean integrated starlight was thoroughly discussed in these papers, it has not been properly included in most of the photometric models of the Galaxy. Only the models of Caplan and Grec (1979) and Mattila (1980a, 1980b) incorporate these effects.


2009 ◽  
Vol 8 (2) ◽  
pp. 121-131 ◽  
Author(s):  
D.H. Forgan

AbstractThe search for extraterrestrial intelligence (SETI) has been heavily influenced by solutions to the Drake Equation, which returns an integer value for the number of communicating civilizations resident in the Milky Way, and by the Fermi Paradox, glibly stated as: ‘If they are there, where are they?’. Both rely on using average values of key parameters, such as the mean signal lifetime of a communicating civilization. A more accurate answer must take into account the distribution of stellar, planetary and biological attributes in the galaxy, as well as the stochastic nature of evolution itself. This paper outlines a method of Monte Carlo realization that does this, and hence allows an estimation of the distribution of key parameters in SETI, as well as allowing a quantification of their errors (and the level of ignorance therein). Furthermore, it provides a means for competing theories of life and intelligence to be compared quantitatively.


2012 ◽  
Vol 10 (H16) ◽  
pp. 356-356
Author(s):  
Misha Haywood

AbstractSecular evolution in disks through angular momentum redistribution of stars induce radial mixing of their orbits. While theoretical studies and simulations now abound on the subject - with various predicted effects: disks growth, flattening of metallicity gradients, possible reversing of the mean age as a function of radius in disk, etc, observational evidences remain sparse. In the Galaxy, possible signatures are searched for in the local distributions of velocities, abundances and ages, or in the variation of large scale chemical gradients with time. I will present the current state of affairs and discuss what kind of evidences is available from data in the Milky Way.


2020 ◽  
Vol 500 (3) ◽  
pp. 3854-3869
Author(s):  
A Bianca Davis ◽  
Anna M Nierenberg ◽  
Annika H G Peter ◽  
Christopher T Garling ◽  
Johnny P Greco ◽  
...  

ABSTRACT We present the first satellite system of the Large Binocular Telescope Satellites Of Nearby Galaxies Survey (LBT-SONG), a survey to characterize the close satellite populations of Large Magellanic Cloud to Milky-Way-mass, star-forming galaxies in the Local Volume. In this paper, we describe our unresolved diffuse satellite finding and completeness measurement methodology and apply this framework to NGC 628, an isolated galaxy with ∼1/4 the stellar mass of the Milky Way. We present two new dwarf satellite galaxy candidates: NGC 628 dwA, and dwB with MV = −12.2 and −7.7, respectively. NGC 628 dwA is a classical dwarf while NGC 628 dwB is a low-luminosity galaxy that appears to have been quenched after reionization. Completeness corrections indicate that the presence of these two satellites is consistent with CDM predictions. The satellite colours indicate that the galaxies are neither actively star forming nor do they have the purely ancient stellar populations characteristic of ultrafaint dwarfs. Instead, and consistent with our previous work on the NGC 4214 system, they show signs of recent quenching, further indicating that environmental quenching can play a role in modifying satellite populations even for hosts smaller than the Milky Way.


2020 ◽  
Vol 497 (1) ◽  
pp. 581-595 ◽  
Author(s):  
Shadab Alam ◽  
John A Peacock ◽  
Katarina Kraljic ◽  
Ashley J Ross ◽  
Johan Comparat

ABSTRACT We develop a new Multitracer Halo Occupation Distribution (MTHOD) framework for the galaxy distribution and apply it to the extended Baryon Oscillation Spectroscopic Survey (eBOSS) final data between z = 0.7 − 1.1. We obtain a best fitting MTHOD  for each tracer and describe the host halo properties of these galaxies. The mean halo masses for LRGs, ELGs, and QSOs are found to be $1.9 \times 10^{13} \, h^{-1}M_\odot$, $1.1 \times 10^{12} \, h^{-1}M_\odot$, and $5 \times 10^{12} \, h^{-1}M_\odot$ respectively in the eBOSS data. We use the MTHOD  framework to create mock galaxy catalogues and predict auto- and cross-correlation functions for all the tracers. Comparing these results with data, we investigate galactic conformity, the phenomenon whereby the properties of neighbouring galaxies are mutually correlated in a manner that is not captured by the basic halo model. We detect 1-halo conformity at more than 3σ statistical significance, while obtaining upper limits on 2-halo conformity. We also look at the environmental dependence of the galaxy quenching efficiency and find that halo mass driven quenching successfully explains the behaviour in high density regions, but it fails to describe the quenching efficiency in low density regions. In particular, we show that the quenching efficiency in low density filaments is higher in the observed data, as compared to the prediction of the MTHOD with halo mass driven quenching. The mock galaxy catalogue constructed in this paper is publicly available on this website1.


Sign in / Sign up

Export Citation Format

Share Document