scholarly journals The dust and gas environment of comet 8P/Tuttle

2021 ◽  
Vol 508 (2) ◽  
pp. 1719-1731
Author(s):  
Pedro J Gutiérrez ◽  
Luisa M Lara ◽  
Fernando Moreno

ABSTRACT Comet 8P/Tuttle has been selected as a possible backup target for the Comet Interceptor mission (ESA). This comet was observed intensively during its previous perihelion passage, in 2008 January. From those observations, important information was obtained about the physical properties of the nucleus and coma. This study focuses on the coma of 8P/Tuttle using visible spectra and images to derive gas and dust production rates. The production rates obtained suggest that this comet can be considered as ‘typical’ concerning the C2/CN and C3/CN ratios, although, depending on the criteria adopted, it could be defined as C3 depleted. NH2 production rates suggest an enrichment of this molecule. Visible and infrared images have been analysed using a Monte Carlo dust tail model. At comparatively large heliocentric distances, the coma is characterized by a dust-to-water ratio around or less than 1. Nevertheless, when the comet approaches perihelion, and the subsolar latitude crosses the equator, the coma dust-to-water ratio increases significantly, reaching values larger than six. Such a high dust-to-gas ratio around perihelion suggests that the nucleus of 8P/Tuttle is also ‘typical’ regarding the refractory content, considering the comparatively high values of that magnitude estimated for different comets.

2018 ◽  
Vol 620 ◽  
pp. A93 ◽  
Author(s):  
E. Mazzotta Epifani ◽  
E. Dotto ◽  
S. Ieva ◽  
D. Perna ◽  
P. Palumbo ◽  
...  

Aims. We present observations of 523676 (2013 UL10), a centaur orbiting between Jupiter and Uranus that is dynamically similar to the few tens of active centaurs that are currently known. Methods. We analysed visible BVR images of the centaur obtained at the Telescopio Nazionale Galileo (La Palma, Canary Islands, Spain) to investigate the weak comet-like activity and to derive information on the nucleus surface colours and size. Results. Centaur 523676 (2013 UL10) is the only centaur known so far that has both comet-like activity and red surface colours: its nucleus has a colour index [B – R] = 1.88 ± 0.11. The nucleus R magnitude (R = 20.93 ± 0.09) allowed us to derive an upper limit for its nucleus size of D ≤ 10 km. We estimated its dust production rate to be Qd ~ 10 kg s−1 at 6.2 au (just after its perihelion passage), resulting in a timescale for the surface blanketing process τB of approximately tens of years, which is very short with respect to typical dynamical lifetime inside the group. Future monitoring of 523676 (2013 UL10) is needed to further constrain the blanketing model for active centaurs and its timescale.


1995 ◽  
Vol 163 ◽  
pp. 355-358
Author(s):  
V. G. Zubko

The physical properties of dust in WR shells are investigated in detail. It has been found that carbon grains may grow in the severe conditions of WR shells due to collisions with impinging positive carbon ions. Detailed physical models of carbon dust and dust production rates for selected WC stars have been calculated. It is concluded that graphite rather than amorphous carbon is the most suitable grain material.


1976 ◽  
Vol 25 (Part1) ◽  
pp. 357-360
Author(s):  
C. Barbieri ◽  
C. B. Cosmovici ◽  
S. Drapatz ◽  
K. W. Michel ◽  
T Nishimura ◽  
...  

AbstractBecause of Comet Kohoutek's anticipated large gas production, which seemed to offer a unique chance to reveal parent molecules, two Fabry-Perot Tilting Filter Photometers were designed with the purpose to detect and study the behaviour of CH4 and its photolysis product H2 The importance of these two molecules is well known and their detection would have given valuable indications about the structure of the nucleus, its thermal history and conditions of formation.Similar to CH4, H2 has no dipole moment and cannot be detected by radioastronomy. The most obvious way for measuring H2 in extended cometary comae is certainly on the basis of fluorescence from the Lyman bands around 1000Å, there are, however, vibrational quadrupole transitions within the overtone bands of the ground electronic state which give rise to emissions in the near infrared, accessible by means of ground based telescopes. Three of the stronger lines are: λ = 0.8748 μ; 0.8560 μ and 0.8497 μ. Methane is more readily detectable in the infrared, since it has strong fundamental (1-0) infrared vibration rotation bands at 3.3 μ (ν3).In order to measure both the CH4 concentration and its rotational temperature, a. very high resolution (~3.7A) high throughput instrument was designed which could isolate several individual vibration-rotation lines in the v3 band, namely the P2, P3 and P9 lines. The instrument consisting of a Fabry-Periot Tilting Filter Photometer with InSb detector interfaced with the 30 cm f/30 Dahl-Kirkham Telescope is described in detail elsewhere.( l). The observations were made in January from the NASA Convair 990 (Galileo II) at an altitude of 13 km, where atmospheric methane absorption can be minimized but not avoided. Doppler shift of cometary and atmospheric lines with respect to one another by at least a few A caused by the orbiting velocity of the comet would be sufficient to allow for high transmission measurements. Though long integration time measurements with Lock-In- Amplifier technique have been carried out, no signals from the CH4-rotational lines of the comet coma could be detected. Using the planet Venus as a calibration source for the photon flux and as a result of delicate laboratory measnrements an upper limit ofcould be derived. This value is several orders of magnitude less than the original predictions for Kohoutek during close approach. Therefore, one could conclude that volatile components like CH4 boiled off the comet well before perihelion, at large (~4 AU) distances from the sun and were responsible for the high brightness of the comet at that time. Such a fractionation is only possible if the nucleus was composed of relatively loose, porous ice, rather than compact ice. This hypothesis was strongly supported by the second experiment for search of H2 in the near infrared at the 182 cm telescope of Asiago. Also in this case a Fabry-Perot tilting filter photometer was designed to match with the f/9 optics of the telescope. The instrument (2) consists in a high resolution (~0.7A) tilting filter system with photon counting technique which allows phase-sensitive background subtraction. On the basis of the best data achieved between January 10 and 15 the occurrence of H2-lines with an intensity larger than 2% of the continuum could be excluded, viz. the flux averaged over the field of view was less than 4.105 photons/cm2 sec sr A. Since the pre- and post-perihelion measurements were not affected by molecular fluorescence, they represent only the light scattering flux from dust particles. The data display that the comet's dust coma was definitely brighter during approach than during recession from the sun. However, the quantity of more fundamental interest is the difference in dust production rates, and a derivation of the mass-production rate of dust could be derived. The study shows that both the dust and gas production rate differ greatly in the pre-perihelion period as compared to the post-perihelion period, as conjectured previously for "virgin" comets. (Dust production rate/gas production rate: pre-perihelion 0.1, post-perihelion 1). The pronounced asymmetry in the production rates strongly suggests that fractionation and dust entrainment effects have to be considered in brightness predictions of young comets, the nucleus of which will generally consist of a multi-component mixture of parent molecules.


2020 ◽  
Author(s):  
Hsuan-Ting Lai ◽  
Wing-Huen Ip ◽  
Wei-Ling Tseng ◽  
Ian-Lin Lai ◽  
David Marshall

<p>The coma structure and gas production rates of H<sub>2</sub>O, CO, CH<sub>3</sub>OH, and NH<sub>3</sub> of comet 67P/Churyumov-Gerasimenko were investigated in detail by different instruments onboard the Rosetta spacecraft between August 2014 and September 2016. We analyzed the nadir-pointing microwave spectroscopic data from the MIRO experiment before and during the perihelion passage in June, July, and August 2015 in order to examine the solar zenith angle dependence of the gas production rates (Q) of H<sub>2</sub>O and CH<sub>3</sub>OH, respectively. From a detailed analysis of the spectral shapes of H<sub>2<sup>18</sup></sub>O at a frequency of 547.676 GHz and those of CH<sub>3</sub>OH at 553.146 GHz, the surface distributions of H<sub>2</sub>O and CH<sub>3</sub>OH can be mapped. We found that the Q-values generally increased with solar insolation. However, there also existed large variations that might be related to chemical heterogeneity of the cometary nucleus surface (or subsurface in individual geomorphological areas and at different spatial scales). A comparison of the CH<sub>3</sub>OH/H<sub>2</sub>O mixing ratio in the two lobes will also be attempted.</p>


2018 ◽  
Vol 862 (2) ◽  
pp. 161
Author(s):  
J. D. Adams ◽  
T. L. Herter ◽  
R. M. Lau ◽  
C. Trinh ◽  
M. Hankins

2019 ◽  
Vol 487 (1) ◽  
pp. 502-521 ◽  
Author(s):  
Ambra Nanni ◽  
Martin A T Groenewegen ◽  
Bernhard Aringer ◽  
Stefano Rubele ◽  
Alessandro Bressan ◽  
...  

ABSTRACT The properties of carbon stars in the Magellanic Clouds (MCs) and their total dust production rates are predicted by fitting their spectral energy distributions (SED) over pre-computed grids of spectra reprocessed by dust. The grids are calculated as a function of the stellar parameters by consistently following the growth for several dust species in their circumstellar envelopes, coupled with a stationary wind. Dust radiative transfer is computed taking as input the results of the dust growth calculations. The optical constants for amorphous carbon are selected in order to reproduce different observations in the infrared and optical bands of Gaia Data Release 2. We find a tail of extreme mass-losing carbon stars in the Large Magellanic Cloud (LMC) with low gas-to-dust ratios that is not present in the Small Magellanic Cloud (SMC). Typical gas-to-dust ratios are around 700 for the extreme stars, but they can be down to ∼160–200 and ∼100 for a few sources in the SMC and in the LMC, respectively. The total dust production rate for the carbon star population is ∼1.77 ± 0.45 × 10−5 M⊙ yr−1, for the LMC, and ∼2.52 ± 0.96 × 10−6 M⊙ yr−1, for the SMC. The extreme carbon stars observed with the Atacama Large Millimeter Array and their wind speed are studied in detail. For the most dust-obscured star in this sample the estimated mass-loss rate is ∼6.3 × 10−5 M⊙ yr−1. The grids of spectra are available at:1 and included in the SED-fitting python package for fitting evolved stars.2


1997 ◽  
Vol 3 (S2) ◽  
pp. 887-888
Author(s):  
John T. Armstrong ◽  
D. E. Newbury ◽  
P. K. Carpenter

Determination of the variation of absolute and relative electron-excited x-ray production rates as a function of electron beam energy and sample atomic number is necessary for calculation of the "stopping power" atomic number correction and the relative amount of characteristic fluorescence and for development of “standardless” and Monte Carlo algorithms for quantitative x-ray analysis. Critical to the calculation of x-ray production rates is an accurate expression for the inner shell electron ionization cross section. A large number of expressions have been proposed for the relative x-ray production rates (used in the fluorescence correction)1 and for the ionization cross section used in the atomic number correction, and these yield quite different results. In order to evaluate which expressions gave the most accurate results when applied to quantitative x-ray emission measurements, we performed a series of high precision measurements of x-ray intensities as a function of electron beam accelerating potential for a series of pure element and simple oxide, phosphide, sulfide, and chloride standards for 65 elements ranging in Z from C to U


2007 ◽  
Vol 39 (3) ◽  
pp. 432-445 ◽  
Author(s):  
A.A. de Almeida ◽  
G.C. Sanzovo ◽  
P.D. Singh ◽  
A. Misra ◽  
R. Miguel Torres ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document