scholarly journals Models of binary neutron star remnants with tabulated equations of state

Author(s):  
Panagiotis Iosif ◽  
Nikolaos Stergioulas

Abstract The emergence of novel differential rotation laws that can reproduce the rotational profile of binary neutron star merger remnants has opened the way for the construction of equilibrium models with properties that resemble those of remnants in numerical simulations. We construct models of merger remnants, using a recently introduced 4-parameter differential rotation law and three tabulated, zero-temperature equations of state. The models have angular momenta that are determined by empirical relations, constructed through numerical simulations. After a systematic exploration of the parameter space of merger remnant equilibrium sequences, which includes the determination of turning points along constant angular momentum sequences, we find that a particular rotation law can reproduce the threshold mass to prompt collapse to a black hole with a relative difference of only $\sim 1\%$ with respect to numerical simulations, in all cases considered. Furthermore, our results indicate a possible correlation between the compactness of equilibrium models of remnants at the threshold mass and the compactness of maximum-mass nonrotating models. Another key prediction of binary neutron star merger simulations is a relatively slowly rotating inner region, where the angular velocity Ω (as measured by an observer at infinity) is mostly due to the frame dragging angular velocity ω. In our investigation of the parameter space of the adopted differential rotation law, we naturally find quasi-spherical (Type A) remnant models with this property. Our investigation clarifies the impact of the differential rotation law and of the equation of state on key properties of binary neutron star remnants and lays the groundwork for including thermal effects in future studies.

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1249 ◽  
Author(s):  
David Radice

Magnetohydrodynamic (MHD) turbulence in neutron star (NS) merger remnants can impact their evolution and multi-messenger signatures, complicating the interpretation of present and future observations. Due to the high Reynolds numbers and the large computational costs of numerical relativity simulations, resolving all the relevant scales of the turbulence will be impossible for the foreseeable future. Here, we adopt a method to include subgrid-scale turbulence in moderate resolution simulations by extending the large-eddy simulation (LES) method to general relativity (GR). We calibrate our subgrid turbulence model with results from very-high-resolution GRMHD simulations, and we use it to perform NS merger simulations and study the impact of turbulence. We find that turbulence has a quantitative, but not qualitative, impact on the evolution of NS merger remnants, on their gravitational wave signatures, and on the outflows generated in binary NS mergers. Our approach provides a viable path to quantify uncertainties due to turbulence in NS mergers.


Universe ◽  
2019 ◽  
Vol 5 (9) ◽  
pp. 193
Author(s):  
Bryen Irving ◽  
Thomas Klähn ◽  
Prashanth Jaikumar ◽  
Marc Salinas ◽  
Wei Wei

We study a specific model of neutron star matter that supports a phase transition to quark matter at high density and examine parameter ranges for consistency with the mass-weighted tidal deformability of Λ ˜ = 300 − 230 + 420 for a mass ratio of q ∈ [ 0.73 , 1.0 ] , as inferred from observations of gravitational waves from the binary neutron star merger event GW170817. By using this observation to restrict the parameter space for the equation of state (EoS) model used throughout this study, we aim to assess the possibility of a potential solution to the masquerade and flavor camouflage problems for hybrid EoS models. Assuming the two stars have the same EoS, in which the Dirac-Brueckner-Hartree Fock (DBHF) nuclear model transitions to the vBag quark model, we see if the parameter space of these hybrid model stars are restricted due to the adherence to the reported Λ 1.4 ∈ 70 , 580 and M m a x ∈ [ 2.01 , 2.16 ] M ⊙ constraints. Upon completion, we find that, while the parameter space for our model does get restricted, it does not ultimately resolve the masquerade and flavor camouflage problems.


Author(s):  
Hamid Hamidani ◽  
Kenta Kiuchi ◽  
Kunihito Ioka

Abstract The gravitational wave event from the binary neutron star (BNS) merger GW170817 and the following multi-messenger observations present strong evidence for i) merger ejecta expanding with substantial velocities and ii) a relativistic jet which had to propagate through the merger ejecta. The ejecta’s expansion velocity is not negligible for the jet head motion, which is a fundamental difference from the other systems like collapsars and active galactic nuclei. Here we present an analytic model of the jet propagation in an expanding medium. In particular, we notice a new term in the expression of the breakout time and velocity. In parallel, we perform a series of over a hundred 2D numerical simulations of jet propagation. The BNS merger ejecta is prepared based on numerical relativity simulations of a BNS merger with the highest-resolution to date. We show that our analytic results agree with numerical simulations over a wide parameter space. Then we apply our analytic model to GW170817, and obtain two solid constraints on: i) the central engine luminosity as Liso, 0 ∼ 3 × 1049 − 2.5 × 1052 erg s−1, and on ii) the delay time between the merger and engine activation t0 − tm < 1.3 s. The engine power implies that the apparently-faint short gamma-ray burst (sGRB) sGRB 170817A is similar to typical sGRBs if observed on-axis.


Author(s):  
M. Fortin ◽  
M. Oertel ◽  
C. Providência

AbstractFor core-collapse and neutron star merger simulations, it is important to have adequate equations of state which describe dense and hot matter as realistically as possible. We present two newly constructed equations of state including the entire baryon octet, compatible with the main constraints coming from nuclear physics, both experimental and theoretical. One of the equations of state describes cold β-equilibrated neutron stars with a maximum mass of 2 Msun. Results obtained with the new equations of state are compared with the ones of DD2Y, the only existing equation of state containing the baryon octet and satisfying the above constraints. The main difference between our new equations of state and DD2Y is the harder symmetry energy of the latter. We show that the density dependence of the symmetry energy has a direct influence on the amount of strangeness inside hot and dense matter and, consequently, on thermodynamic quantities. We expect that these differences affect the evolution of a proto-neutron star or binary neutron star mergers. We propose also several parameterisations based on the DD2 and SFHo models calibrated to Lambda hypernuclei that satisfy the different constraints.


2020 ◽  
Vol 496 (1) ◽  
pp. L16-L21 ◽  
Author(s):  
Elias R Most ◽  
Lukas R Weih ◽  
Luciano Rezzolla

ABSTRACT The first binary neutron star merger event, GW170817, and its bright electromagnetic counterpart have provided a remarkable amount of information. By contrast, the second event, GW190425, with $M_{\rm tot}=3.4^{+0.3}_{-0.1}\, \mathrm{ M}_{\odot }$ and the lack of an electromagnetic counterpart, has hardly improved our understanding of neutron star physics. While GW190425 is compatible with a scenario in which the merger has led to a prompt collapse to a black hole and little ejected matter to power a counterpart, determining the mass ratio and the effective spin $\tilde{\chi }$ of the binary remains difficult. This is because gravitational waveforms cannot yet well constrain the component spins of the binary. However, since the mass of GW190425 is significantly larger than the maximum mass for non-rotating neutron stars, $M_{_{\rm TOV}}$, the mass ratio q cannot be too small, as the heavier star would not be gravitationally stable. Making use of universal relations and a large number of equations of state, we provide limits in the $(\tilde{\chi },q)$ plane for GW190425, namely qmin ≥ 0.38 and $\tilde{\chi }_{\rm max}\le 0.20$, assuming $M_\mathrm{tot} \simeq 3.4\, \mathrm{ M}_\odot$. Finally, we show how future observations of high-mass binaries can provide a lower bound on $M_{_{\rm TOV}}$.


2020 ◽  
Vol 641 ◽  
pp. A56
Author(s):  
Xiaoxiao Ren ◽  
Daming Wei ◽  
Zhenyu Zhu ◽  
Yan Yan ◽  
Chengming Li

The joint detection of the gravitational wave signal and the electromagnetic emission from a binary neutron star merger can place unprecedented constraint on the equation of state of supranuclear matter. Although a variety of electromagnetic counterparts have been observed for GW170817, including a short gamma-ray burst, kilonova, and the afterglow emission, the nature of the merger remnant is still unclear, however. The X-ray plateau is another important characteristics of short gamma-ray bursts. This plateau is probably due to the energy injection from a rapidly rotating magnetar. We investigate what we can learn from the detection of a gravitational wave along with the X-ray plateau. In principle, we can estimate the mass of the merger remnant if the X-ray plateau is caused by the central magnetar. We selected eight equations of state that all satisfy the constraint given by the gravitational wave observation, and then calculated the mass of the merger remnants of four short gamma-ray bursts with a well-measured X-ray plateau. If, on the other hand, the mass of the merger remnant can be obtained by gravitational wave information, then by comparing the masses derived by these two different methods can further constrain the equation of state. We discuss the possibility that the merger product is a quark star. In addition, we estimate the possible mass range for the recently discovered X-ray transient CDF-S XT2 that probably originated from a binary neutron star merger. Finally, under the assumption that the post-merger remnant of GW170817 was a supramassive neutron star, we estimated the allowed parameter space of the supramassive neutron star and find that in this case, the magnetic dipole radiation energy is so high that it may have some effects on the short gamma-ray burst and kilonova emission. The lack of detection of these effects suggests that the merger product of GW170817 may not be a supermassive neutron star.


2021 ◽  
Vol 252 ◽  
pp. 05005
Author(s):  
Alkiviadis Kanakis-Pegios ◽  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

One of the greatest interest and open problems in nuclear physics is the upper limit of the speed of sound in dense nuclear matter. Neutron stars, both in isolated and binary system cases, constitute a very promising natural laboratory for studying this kind of problem. This present work is based on one of our recent study, regarding the speed of sound and possible constraints that we can obtain from neutron stars. To be more specific, in the core of our study lies the examination of the speed of sound through the measured tidal deformability of a binary neutron star system (during the inspiral phase). The relation between the maximum neutron star mass scenario and the possible upper bound on the speed of sound is investigated. The approach that we used follows the contradiction between the recent observations of binary neutron star systems, in which the effective tidal deformability favors softer equations of state, while the high measured masses of isolated neutron stars favor stiffer equations of state. In our approach, we parametrized the stiffness of the equation of state by using the speed of sound. Moreover, we used the two recent observations of binary neutron star mergers from LIGO/VIRGO, so that we can impose robust constraints on the speed of sound. Furthermore, we postulate the kind of future measurements that could be helpful by imposing more stringent constraints on the equation of state.


Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 119 ◽  
Author(s):  
Antonios Nathanail

In the dawn of the multi-messenger era of gravitational wave astronomy, which was marked by the first ever coincident detection of gravitational waves and electromagnetic radiation, it is important to take a step back and consider our current established knowledge. Numerical simulations of binary neutron star mergers and simulations of short GRB jets must combine efforts to understand such complicated and phenomenologically rich explosions. We review the status of numerical relativity simulations with respect to any jet or magnetized outflow produced after merger. We compare what is known from such simulations with what is used and obtained from short GRB jet simulations propagating through the BNS ejecta. We then review the established facts on this topic, as well as discuss things that need to be revised and further clarified.


Sign in / Sign up

Export Citation Format

Share Document