scholarly journals The former companion of hyper-velocity star S5-HVS1

2021 ◽  
Vol 503 (1) ◽  
pp. 603-613
Author(s):  
Wenbin Lu ◽  
Jim Fuller ◽  
Yael Raveh ◽  
Hagai B Perets ◽  
Ting S Li ◽  
...  

ABSTRACT The hyper-velocity star S5-HVS1, ejected 5 Myr ago from the Galactic Centre at 1800 km s−1, was most likely produced by tidal break-up of a tight binary by the supermassive black hole SgrA*. Taking a Monte Carlo approach, we show that the former companion of S5-HVS1 was likely a main-sequence star between 1.2 and 6 M⊙ and was captured into a highly eccentric orbit with pericentre distance in the range of 1–10 au and semimajor axis about 103 au. We then explore the fate of the captured star. We find that the heat deposited by tidally excited stellar oscillation modes leads to runaway disruption if the pericentre distance is smaller than about $3\rm \, au$. Over the past 5 Myr, its angular momentum has been significantly modified by orbital relaxation, which may stochastically drive the pericentre inwards below $3\rm \, au$ and cause tidal disruption. We find an overall survival probability in the range 5 per cent to 50 per cent, depending on the local relaxation time in the close environment of the captured star, and the initial pericentre at capture. The pericentre distance of the surviving star has migrated to 10–100 au, making it potentially the most extreme member of the S-star cluster. From the ejection rate of S5-HVS1-like stars, we estimate that there may currently be a few stars in such highly eccentric orbits. They should be detectable (typically $K_{\rm s}\lesssim 18.5\,$ mag) by the GRAVITY instrument and by future Extremely Large Telescopes and hence provide an extraordinary probe of the spin of SgrA*.

2011 ◽  
Vol 7 (S285) ◽  
pp. 261-268
Author(s):  
Glennys R. Farrar

AbstractThe past year has seen major advances in the observational status of Stellar Tidal Disruption, with the discovery of two strong optical candidates in archived SDSS data and the real-time X-ray detection of Swift J1644+57, plus rapid radio and optical follow-up establishing it as a probable Tidal Disruption Flare (TDF) in “blazar mode”. These observations motivated a workshop devoted to discussion of such events and of the theory of their emission and flare rate. Observational contributions included a presentation of Swift J2058+05 (a possible second example of a TDF in blazar mode), reports on the late-time evolution and X-ray variability of the two Swift events, and a proposal that additional candidates may be evidenced by spectral signatures in SDSS. Theory presentations included models of radio emission, theory of light curves and the proposal that GRB101225A may be the Galactic tidal disruption of a neutron star, an interpretation of Swift J1644+57 as due to the disruption of a white dwarf instead of main-sequence star, calculation of the dependence of the TDF rate on the spin of the black hole, and analysis of the SDSS events, fitting their SEDs to profiles of thoretical emission from accretion disks and showing that their luminosity and rate are consistent with the proposal that TDEs can be responsible for UHECR acceleration.


1967 ◽  
Vol 31 ◽  
pp. 405
Author(s):  
F. J. Kerr

A continuum survey of the galactic-centre region has been carried out at Parkes at 20 cm wavelength over the areal11= 355° to 5°,b11= -3° to +3° (Kerr and Sinclair 1966, 1967). This is a larger region than has been covered in such surveys in the past. The observations were done as declination scans.


2020 ◽  
Vol 501 (1) ◽  
pp. 730-746
Author(s):  
Omri Ginzburg ◽  
Marc Huertas-Company ◽  
Avishai Dekel ◽  
Nir Mandelker ◽  
Gregory Snyder ◽  
...  

ABSTRACT We use deep learning to explore the nature of observed giant clumps in high-redshift disc galaxies, based on their identification and classification in cosmological simulations. Simulated clumps are detected using the 3D gas and stellar densities in the VELA zoom-in cosmological simulation suite, with ${\sim}25\ \rm {pc}$ maximum resolution, targeting main-sequence galaxies at 1 < z < 3. The clumps are classified as long-lived clumps (LLCs) or short-lived clumps (SLCs) based on their longevity in the simulations. We then train neural networks to detect and classify the simulated clumps in mock, multicolour, dusty, and noisy HST-like images. The clumps are detected using an encoder–decoder convolutional neural network (CNN), and are classified according to their longevity using a vanilla CNN. Tests using the simulations show our detector and classifier to be ${\sim}80{{\ \rm per\ cent}}$ complete and ${\sim}80{{\ \rm per\ cent}}$ pure for clumps more massive than ∼107.5 M⊙. When applied to observed galaxies in the CANDELS/GOODS S+N fields, we find both types of clumps to appear in similar abundances in the simulations and the observations. LLCs are, on average, more massive than SLCs by ∼0.5 dex, and they dominate the clump population above Mc ≳ 107.6 M⊙. LLCs tend to be found closer to the galactic centre, indicating clump migration to the centre or preferential formation at smaller radii. The LLCs are found to reside in high-mass galaxies, indicating better clump survivability under supernova feedback there, due to clumps being more massive in these galaxies. We find the clump masses and radial positions in the simulations and the observations to agree within a factor of 2.


2007 ◽  
Vol 3 (S246) ◽  
pp. 291-300 ◽  
Author(s):  
Scott M. Ransom

AbstractGlobular clusters produce orders of magnitude more millisecond pulsars per unit mass than the Galactic disk. Since the first cluster pulsar was uncovered 20 years ago, at least 138 have been identified – most of which are binary millisecond pulsars. Because their origins involve stellar encounters, many of the systems are exotic objects that would never be observed in the Galactic disk. Examples include pulsar-main sequence binaries, extremely rapid rotators (including the current record holder), and millisecond pulsars in highly eccentric orbits. These systems are allowing new probes of the interstellar medium, the equation of state of material at supra-nuclear density, the masses of neutron stars, and globular cluster dynamics.


2007 ◽  
Vol 463 (3) ◽  
pp. 1211-1214 ◽  
Author(s):  
T. Appourchaux ◽  
J. Leibacher ◽  
P. Boumier

2009 ◽  
Vol 5 (S268) ◽  
pp. 387-394
Author(s):  
Sylvie Vauclair

AbstractAsteroseismology is a powerful tool to derive stellar parameters, including the helium content and internal helium gradients, and the macroscopic motions which can lead to lithium, beryllium, and boron abundance variations. Precise determinations of these parameters need deep analyses for each individual stars. After a general introduction on helio and asteroseismology, I first discuss the solar case, the results which have been obtained in the past two decades, and the crisis induced by the new determination of the abundances of heavy elements. Then I discuss asteroseismology in relation with light element abundances, especially for the case of main sequence stars.


2019 ◽  
Vol 623 ◽  
pp. A84 ◽  
Author(s):  
J. S. Clark ◽  
M. E. Lohr ◽  
L. R. Patrick ◽  
F. Najarro

The Arches is one of the youngest, densest and most massive clusters in the Galaxy. As such it provides a unique insight into the lifecycle of the most massive stars known and the formation and survival of such stellar aggregates in the extreme conditions of the Galactic Centre. In a previous study we presented an initial stellar census for the Arches and in this work we expand upon this, providing new and revised classifications for ∼30% of the 105 spectroscopically identified cluster members as well as distinguishing potential massive runaways. The results of this survey emphasise the homogeneity and co-evality of the Arches and confirm the absence of H-free Wolf-Rayets of WC sub-type and predicted luminosities. The increased depth of our complete dataset also provides significantly better constraints on the main sequence population; with the identification of O9.5 V stars for the first time we now spectroscopically sample stars with initial masses ranging from ∼16 M⊙ to ≥120 M⊙. Indeed, following from our expanded stellar census we might expect ≳50 stars within the Arches to have been born with masses ≳60 M⊙, while all 105 spectroscopically confirmed cluster members are massive enough to leave relativistic remnants upon their demise. Moreover the well defined observational properties of the main sequence cohort will be critical to the construction of an extinction law appropriate for the Galactic Centre and consequently the quantitative analysis of the Arches population and subsequent determination of the cluster initial mass function.


2019 ◽  
Vol 489 (1) ◽  
pp. 1072-1081 ◽  
Author(s):  
Mikkel N Lund

ABSTRACT A better understanding of the amplitudes of stellar oscillation modes and surface granulation is essential for improving theories of mode physics and the properties of the outer convection zone of solar-like stars. A proper prediction of these amplitudes is also essential for appraising the detectability of solar-like oscillations for asteroseismic analysis. Comparisons with models, or between different photometric missions, are enabled by applying a bolometric correction, which converts mission-specific amplitudes to their corresponding bolometric (full light) values. We derive the bolometric correction factor for amplitudes of radial oscillation modes and surface granulation as observed by the Kepler, CoRoT, and TESS missions. The calculations are done assuming a stellar spectrum given by a black-body as well as by synthetic spectral flux densities from 1D model atmospheres. We derive a power-law and polynomial relations for the bolometric correction as a function of temperature from the black-body approximation and evaluate the deviations from adopting a more realistic spectrum. Across the full temperature range from 4000 to 7500 K, the amplitudes from TESS are in the black-body approximation predicted to be a factor ∼0.83–0.84 times those observed by Kepler. We find that using more realistic flux spectra over the black-body approximation can change the bolometric correction by as much as ${\sim }30{{\ \rm per\ cent}}$ at the lowest temperatures, but with a change typically within ${\sim }5\!-\!10 {{\ \rm per\ cent}}$ around a Teff of 5500–6000 K. We find that after Teff, the bolometric correction most strongly depends on $\rm [M/H]$, which could have an impact on reported metallicity dependences of amplitudes reported in the literature.


1979 ◽  
Vol 47 ◽  
pp. 337-346 ◽  
Author(s):  
N. R. Walborn

AbstractThe importance of maintaining the greatest possible independence of spectral classification from theoretical or other external information is emphasized anew, with reference to some historical discussions now seen with the benefit of hindsight. This ideal requirement applies equally to the development and to the application of a classification system, although in practice some well-established information may guide one’s intuition in the initial hypothetical formulation. The fundamental position of this principle in the MK approach to classification is a major reason for the value of its spectral types, and for its continuing success in uncovering new phenomena. The ability of a particular technique to produce interesting or useful results is surely the most significant criterion of its value, and from this viewpoint it appears that new techniques and methods will complement rather than replace traditional spectral classification. Finally, the unique importance at this time of applying both new and traditional methods to spectral classification in the Magellanic Clouds is stressed; they provide the only current opportunity for detailed spectroscopic examination of numerous stars in external systems. It is essential that large telescopes be utilized for this work so that the best attainable observational quality may be maintained, and the many fascinating phenomena revealed by spectral classification in the Galaxy can be comparatively investigated to the maximum extent praticable in the Magellanic Clouds


2020 ◽  
Vol 495 (1) ◽  
pp. 199-223 ◽  
Author(s):  
Jindra Gensior ◽  
J M Diederik Kruijssen ◽  
Benjamin W Keller

ABSTRACT Quenched galaxies are often observed to contain a strong bulge component. The key question is whether this reflects a causal connection – can star formation be quenched dynamically by bulges or the spheroids of early-type galaxies? We systematically investigate the impact of these morphological components on star formation, by performing a suite of hydrodynamical simulations of isolated galaxies containing a spheroid. We vary the bulge mass and scale radius, while the total initial stellar, halo, and gas mass are kept constant, with a gas fraction of 5 per cent. In addition, we consider two different sub-grid star formation prescriptions. The first follows most simulations in the literature by assuming a constant star formation efficiency per free-fall time, whereas in the second model it depends on the gas virial parameter, following high-resolution simulations of turbulent fragmentation. Across all simulations, central spheroids increase the gas velocity dispersion towards the galactic centre. This increases the gravitational stability of the gas disc, suppresses fragmentation and star formation, and results in galaxies hosting extremely smooth and quiescent gas discs that fall below the galaxy main sequence. These effects amplify when using the more sophisticated, dynamics-dependent star formation model. Finally, we discover a pronounced relation between the central stellar surface density and star formation rate (SFR), such that the most bulge-dominated galaxies show the strongest deviation from the main sequence. We conclude that the SFR of galaxies is not only set by the balance between accretion and feedback, but carries a (sometimes dominant) dependence on the gravitational potential.


Sign in / Sign up

Export Citation Format

Share Document