scholarly journals A local leaky-box model for the local stellar surface density–gas surface density–gas phase metallicity relation

2017 ◽  
Vol 468 (4) ◽  
pp. 4494-4501 ◽  
Author(s):  
Guangtun Ben Zhu ◽  
Jorge K. Barrera-Ballesteros ◽  
Timothy M. Heckman ◽  
Nadia L. Zakamska ◽  
Sebastian F. Sánchez ◽  
...  
2015 ◽  
Vol 15 (20) ◽  
pp. 28659-28697 ◽  
Author(s):  
B. Yuan ◽  
J. Liggio ◽  
J. Wentzell ◽  
S.-M. Li ◽  
H. Stark ◽  
...  

Abstract. We describe the results from online measurements of nitrated phenols using a time of flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP) and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding of the evolution of primary VOCs in the atmosphere.


2008 ◽  
Vol 4 (S254) ◽  
pp. 307-312
Author(s):  
Leo Blitz

AbstractThe molecular gas in galaxy disks shows much more galaxy to galaxy variation than does the atomic gas. Detailed studies show that this variation can be attributed to differences in hydrostatic pressure in the disks due largely to variations in the stellar surface density and the total gas surface density. One prediction of pressure modulated H2 formation is that the location where HI and H2 have equal surface densities occurs at a constant value of the stellar surface density in the disk. Observations confirm this constancy to 40%.


2018 ◽  
Vol 483 (4) ◽  
pp. 5548-5553 ◽  
Author(s):  
Michael Y Grudić ◽  
Philip F Hopkins ◽  
Eliot Quataert ◽  
Norman Murray

2013 ◽  
Vol 13 (10) ◽  
pp. 5117-5135 ◽  
Author(s):  
B. Ervens ◽  
Y. Wang ◽  
J. Eagar ◽  
W. R. Leaitch ◽  
A. M. Macdonald ◽  
...  

Abstract. Cloud and fog droplets efficiently scavenge and process water-soluble compounds and, thus, modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC) in the aqueous phase reach concentrations on the order of ~ 10 mgC L−1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i) the removal of species from the gas phase preventing their processing by gas phase reactions (e.g., photolysis of aldehydes) and (ii) the formation of unique products that do not have any efficient gas phase sources (e.g., dicarboxylic acids). We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds at a biogenically-impacted location (Whistler, Canada) and in fog water in a more polluted area (Davis, CA). Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤ 2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions) in the aqueous phase of clouds or fogs, respectively, comprises 2–~ 40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidised and, thus, more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC) increases by an order of magnitude from 7 × 103 M atm−1 to 7 × 104 M atm−1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. These simulations are used to contrast two scenarios, i.e., an anthropogenically vs. a more biogenically impacted one as being representative for Davis and Whistler, respectively. Since the simplicity of the box model prevents a fully quantitative prediction of the observed aldehyde concentrations, we rather use the model results to compare trends in aldehyde partitioning and ratios. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas phase levels significantly by two orders of magnitude due to a weaker net source of HO2 production from aldehyde photolysis in the gas phase. Despite the high solubility of dicarbonyl compounds (glyoxal, methylglyoxal), their impact on the HO2 budget by scavenging is < 10% of that of formaldehyde. The overview of DOC and aldehyde measurements presented here reveals that clouds and fogs can be efficient sinks for organics, with increasing importance in aged air masses. Even though aldehydes, specifically formaldehyde, only comprise ~ 1% of DOC, their scavenging and processing in the aqueous phase might translate into significant effects in the oxidation capacity of the atmosphere.


2009 ◽  
Vol 9 (19) ◽  
pp. 7461-7479 ◽  
Author(s):  
M. Springmann ◽  
D. A. Knopf ◽  
N. Riemer

Abstract. This study assesses in detail the effects of heterogeneous chemistry on the particle surface and gas-phase composition by modeling the reversible co-adsorption of O3, NO2, and H2O on soot coated with benzo[a]pyrene (BaP) for an urban plume scenario over a period of five days. By coupling the Pöschl-Rudich-Ammann (PRA) kinetic framework for aerosols (Pöschl et al., 2007) to a box model version of the gas phase mechanism RADM2, we are able to track individual concentrations of gas-phase and surface species over the course of several days. The flux-based PRA formulation takes into account changes in the uptake kinetics due to changes in the chemical gas-phase and particle surface compositions. This dynamic uptake coefficient approach is employed for the first time in a broader atmospheric context of an urban plume scenario. Our model scenarios include one to three adsorbents and three to five coupled surface reactions. The results show a variation of the O3 and NO2 uptake coefficients of more than five orders of magnitude over the course of the simulation time and a decrease in the uptake coefficients in the various scenarios by more than three orders of magnitude within the first six hours. Thereafter, periodic peaks of the uptake coefficients follow the diurnal cycle of gas-phase O3-NOx reactions. Physisorption of water vapor reduces the half-life of the coating substance BaP by up to a factor of seven by permanently occupying ~75% of the soot surface. Soot emissions modeled by replenishing reactive surface sites lead to maximum gas-phase O3 depletions of 41 ppbv and 7.8 ppbv for an hourly and six-hourly replenishment cycle, respectively. This conceptual study highlights the interdependence of co-adsorbing species and their non-linear gas-phase feedback. It yields further insight into the atmospheric importance of the chemical oxidation of particles and emphasizes the necessity to implement detailed heterogeneous kinetics in future modeling studies.


2021 ◽  
Author(s):  
Simon Rosanka ◽  
Rolf Sander ◽  
Bruno Franco ◽  
Catherine Wespes ◽  
Andreas Wahner ◽  
...  

&lt;p&gt;Large parts of the troposphere are affected by clouds, whose aqueous-phase chemistry differs significantly from gas-phase chemistry. Box-model studies have demonstrated that clouds influence the tropospheric oxidation capacity. However, most global atmospheric models do not represent this chemistry reasonably well and are largely limited to sulfur oxidation. Therefore, we have developed the J&amp;#252;lich Aqueous-phase Mechanism of Organic Chemistry (JAMOC), making a detailed in-cloud oxidation model of oxygenated volatile organic compounds (OVOCs) readily available for box as well as for regional and global simulations that are affordable with modern supercomputers. JAMOC includes the phase transfer of species containing up to ten carbon atoms, and the aqueous-phase reactions of a selection of species containing up to four carbon atoms, e.g., ethanol, acetaldehyde, glyoxal. The impact of in-cloud chemistry on tropospheric composition is assessed on a regional and global scale by performing a combination of box-model studies using the Chemistry As A Boxmodel Application (CAABA) and the global atmospheric model ECHAM/MESSy (EMAC). These models are capable to represent the described processes explicitly and integrate the corresponding ODE system with a Rosenbrock solver.&amp;#160;&lt;/p&gt;&lt;p&gt;Overall, the explicit in-cloud oxidation leads to a reduction of predicted OVOCs levels. By comparing EMAC's prediction of methanol abundance to spaceborne retrievals from the Infrared Atmospheric Sounding Interferometer (IASI), a reduction in EMAC's overestimation is observed in the tropics. Further, the in-cloud OVOC oxidation shifts the hydroperoxyl radicals (HO&lt;sub&gt;2&lt;/sub&gt;) production from the gas- to the aqueous-phase. As a result, the in-cloud destruction (scavenging) of ozone (O&lt;sub&gt;3&lt;/sub&gt;) by the superoxide anion (O&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;) is enhanced and accompanied by a reduction in both sources and sinks of tropospheric O&lt;sub&gt;3&lt;/sub&gt; in the gas phase. By considering only the in-cloud sulfur oxidation by O&lt;sub&gt;3&lt;/sub&gt;, about 13 Tg a&lt;sup&gt;-1&lt;/sup&gt; of O&lt;sub&gt;3&lt;/sub&gt; are scavenged, which increases to 336 Tg a&lt;sup&gt;-1&lt;/sup&gt; when JAMOC is used. With the full oxidation scheme, the highest O&lt;sub&gt;3&lt;/sub&gt; reduction of 12 % is predicted in the upper troposphere/lower stratosphere (UTLS). Based on the IASI O&lt;sub&gt;3&lt;/sub&gt; retrievals, it is demonstrated that these changes in the free troposphere significantly reduce the modelled tropospheric O&lt;sub&gt;3&lt;/sub&gt; columns, which are known to be generally overestimated by global atmospheric models. Finally, the relevance of aqueous-phase oxidation of organics for ozone in hazy polluted regions will be presented. &amp;#160;&lt;/p&gt;


2018 ◽  
Vol 479 (2) ◽  
pp. 1807-1821 ◽  
Author(s):  
Francesco D’Eugenio ◽  
Matthew Colless ◽  
Brent Groves ◽  
Fuyan Bian ◽  
Tania M Barone

2007 ◽  
Vol 3 (S244) ◽  
pp. 247-255
Author(s):  
Joop Schaye

AbstractTo make predictions for the existence of “dark galaxies”, it is necessary to understand what determines whether a gas cloud will form stars. Star formation thresholds are generally explained in terms of the Toomre criterion for gravitational instability. I contrast this theory with the thermo-gravitational instability hypothesis of Schaye (2004), in which star formation is triggered by the formation of a cold gas phase and which predicts a nearly constant surface density threshold. I argue that although the Toomre analysis is useful for the global stability of disc galaxies, it relies on assumptions that break down in the outer regions, where star formation thresholds are observed. The thermo-gravitational instability hypothesis can account for a number of observed phenomena, some of which were thought to be unrelated to star formation thresholds.


2005 ◽  
Vol 2 (3) ◽  
pp. 205 ◽  
Author(s):  
Li Pan ◽  
Gregory R. Carmichael

Environmental Context. Elemental mercury (Hg0) is converted to divalent mercury (Hg2+) in the atmosphere, largely in water droplets. The wet deposition of Hg2+ is a major concern to human health. Because it is bio-accumulated through the food chain, consumption of contaminated fish can be particularly dangerous. Currently the budgets of mercury in the atmosphere are poorly understood, due in part to uncertainties in the chemical pathways controlling the speciated forms of mercury. Improved mercury chemistry models are needed to better predict Hg2+ levels in water droplets and to estimate wet deposition of Hg2+ in order to help assess the potential health risks of mercury. Abstract. A box model designed to investigate mercury chemical mechanisms in the atmosphere is presented. Aqueous-phase mercury oxidation–reduction, sulfite, and oxygen reactions, along with gas-phase mercury reactions are included in the model. The model is used to evaluate the key reaction steps under several atmospheric conditions. The sensitivity of the results to parameters, initial conditions, and assumptions regarding chemical mechanisms are investigated. Model simulations were performed in closed (liquid only) and two-phase (liquid/gas) systems. In the liquid phase, elemental mercury is oxidized to divalent mercury by ozone at night and by hydroxide radical and ozone during the day. Ozone is shown to play a significant role in mercury mechanisms by oxidizing elemental mercury directly and producing hydroxyl and hydroperoxyl radicals. The effects of sulfite on mercury aqueous chemistry were found to be limited due to its rapid conversion to sulfate. The results of two-phase simulations show that Hg2+ concentrations exhibit a diurnal cycle, increasing before the sunrise and decreasing before the sunset due to the aqueous-phase hydrogen–oxygen photochemistry that produces hydroxyl and hydroperoxyl radicals. Gas-phase mercury oxidation reactions significantly enhance the levels of Hg2+ in the aqueous phase, and reactions with ozone and hydroxyl radicals play the leading role. The effect of reactive chlorine on mercury chemistry can be important.


Sign in / Sign up

Export Citation Format

Share Document