scholarly journals Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

2013 ◽  
Vol 13 (10) ◽  
pp. 5117-5135 ◽  
Author(s):  
B. Ervens ◽  
Y. Wang ◽  
J. Eagar ◽  
W. R. Leaitch ◽  
A. M. Macdonald ◽  
...  

Abstract. Cloud and fog droplets efficiently scavenge and process water-soluble compounds and, thus, modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC) in the aqueous phase reach concentrations on the order of ~ 10 mgC L−1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i) the removal of species from the gas phase preventing their processing by gas phase reactions (e.g., photolysis of aldehydes) and (ii) the formation of unique products that do not have any efficient gas phase sources (e.g., dicarboxylic acids). We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds at a biogenically-impacted location (Whistler, Canada) and in fog water in a more polluted area (Davis, CA). Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤ 2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions) in the aqueous phase of clouds or fogs, respectively, comprises 2–~ 40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidised and, thus, more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC) increases by an order of magnitude from 7 × 103 M atm−1 to 7 × 104 M atm−1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. These simulations are used to contrast two scenarios, i.e., an anthropogenically vs. a more biogenically impacted one as being representative for Davis and Whistler, respectively. Since the simplicity of the box model prevents a fully quantitative prediction of the observed aldehyde concentrations, we rather use the model results to compare trends in aldehyde partitioning and ratios. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas phase levels significantly by two orders of magnitude due to a weaker net source of HO2 production from aldehyde photolysis in the gas phase. Despite the high solubility of dicarbonyl compounds (glyoxal, methylglyoxal), their impact on the HO2 budget by scavenging is < 10% of that of formaldehyde. The overview of DOC and aldehyde measurements presented here reveals that clouds and fogs can be efficient sinks for organics, with increasing importance in aged air masses. Even though aldehydes, specifically formaldehyde, only comprise ~ 1% of DOC, their scavenging and processing in the aqueous phase might translate into significant effects in the oxidation capacity of the atmosphere.

2012 ◽  
Vol 12 (12) ◽  
pp. 33083-33125 ◽  
Author(s):  
B. Ervens ◽  
Y. Wang ◽  
J. Eagar ◽  
W. R. Leaitch ◽  
A. M. Macdonald ◽  
...  

Abstract. Cloud and fog droplets efficiently scavenge and process water-soluble compounds and thus modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC) in the aqueous phase reach concentrations on the order of ~10 mg C L−1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i) the removal of species from the gas phase preventing their processing by gas phase reactions (e.g. photolysis of aldehydes) and (ii) the formation of unique products that do not have any efficient gas phase sources (e.g. dicarboxylic acids). We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds in a biogenically-impacted location (Whistler, Canada) and in fog water in a more polluted area (Davis, CA). Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions) in the aqueous phase comprises 1–~40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidized and thus more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC) increases by an order of magnitude from 7×103 M atm−1 to 7×104 M atm−1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas phase levels by two orders of magnitude due to a weaker net source of HO2 production from aldehyde photolysis in the gas phase. Despite the high solubility of dialdehydes (glyoxal, methylglyoxal), their impact on the HO2 budget by scavenging is <10% of that of formaldehyde. The overview of DOC and aldehyde measurements presented here reveals that clouds and fogs can be efficient sinks for organics, with increasing importance in aged air masses. Even though aldehydes, specifically formaldehyde, only comprise ~1% of DOC, their scavenging and processing in the aqueous phase might translate into significant effects on the oxidation capacity of the atmosphere.


2018 ◽  
Author(s):  
Qing Yu ◽  
Jing Chen ◽  
Weihua Qin ◽  
Yuepeng Zhang ◽  
Siming Cheng ◽  
...  

Abstract. Water soluble organic carbon (WSOC) in atmospheric aerosols may pose significant impacts on haze formation, climate change, and human health. This study investigated the distribution characteristics and sources of WSOC in Beijing based on the diurnal PM1, PM2.5 and PM10 samples collected during haze episodes in winter and early spring of 2017. The haze episode in winter showed elevated level of WSOC, around three times of that in spring. WSOC was enriched in PM2.5 in winter while the proportions in both finer (0–1 μm) and coarse particles (2.5–10 μm) increased in spring. Several organic tracers were carefully selected and measured to demonstrate the sources and formation mechanism of WSOC. Most of the identified organic tracers showed similar seasonal variation, diurnal change and size distributions with WSOC, while the biogenic secondary organic aerosol (SOA) tracer cis-pinonic acid was an obvious exception. Based on the distribution characteristics of the secondary organic tracers and their correlation patterns with key influencing factors, the importance of the gas-phase versus aqueous-phase oxidation processes on SOA formation was explored. The gas-phase photochemical oxidation was weakened during haze episodes, whereas the aqueous-phase oxidation became the major pathway of SOA formation, especially in winter, at night and for the coarser particles. Secondary sources accounted for more than 50 % of WSOC in both winter and spring. Biomass burning was not the dominant source of WSOC in Beijing during haze episodes. Primary sources showed greater influence on finer particles while secondary sources became more important for coarser particles during haze episode in winter. SOC estimated by the OC-EC method, WSOC-levoglucosan method, and PMF-based methods were comparable, and the potential errors for different SOC estimation methods were discussed.


2013 ◽  
Vol 13 (2) ◽  
pp. 1023-1037 ◽  
Author(s):  
C. Mouchel-Vallon ◽  
P. Bräuer ◽  
M. Camredon ◽  
R. Valorso ◽  
S. Madronich ◽  
...  

Abstract. The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.


2016 ◽  
Vol 16 (22) ◽  
pp. 14409-14420 ◽  
Author(s):  
Neha Sareen ◽  
Annmarie G. Carlton ◽  
Jason D. Surratt ◽  
Avram Gold ◽  
Ben Lee ◽  
...  

Abstract. Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS–MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus, formation of pyruvate/oxalate suggests the potential for aqueous processing of these ambient mixtures to form SOAAQ.


2019 ◽  
Author(s):  
John G. Watson ◽  
Junji Cao ◽  
L.W. Antony Chen ◽  
Qiyuan Wang ◽  
Jie Tian ◽  
...  

Abstract. Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, U.S.A.), subtropical (northern and southern Florida, U.S.A), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with 25 % fuel moisture were conducted with predominant smoldering combustion conditions (average modified combustion efficiency [MCE] = 0.82 ± 0.08). Average fuel-based EFCO2 (carbon dioxide) are highest (1400 ± 38 g kg−1) and lowest (1073 ± 63 g kg−1) for the Alaskan and Russian peats, respectively. EFCO (carbon monoxide) and EFCH4 (methane) are ~12 %‒15 % and ~0.3 %‒0.9  % of EFCO2, in the range of 157‒171 g kg−1 and 3‒10 g kg−1, respectively. EFs for nitrogen species are at the same magnitude of EFCH4, with an average of 5.6 ± 4.8 and 4.7 ± 3.1 g kg−1 for EFNH3 (ammonia) and EFHCN (hydrogen cyanide); 1.9 ± 1.1 g kg−1 for EFNOx (nitrogen oxides); as well as 2.4 ± 1.4 and 2.0 ± 0.7 g kg−1 for EFNOy (reactive nitrogen) and EFN2O (nitrous oxide). An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of ~2 and ~7 days to compare fresh (upstream) and aged (downstream) emissions. Filter-based EFPM2.5 varied by >4-fold (14‒61 g kg−1) without appreciable changes between fresh and aged emissions. The majority of EFPM2.5 consists of EFOC (organic carbon), with EFOC/EFPM2.5 ratios in the range of 52 %‒98 % for fresh emissions, and ~15 % degradation after aging. Reductions of EFOC (~7‒9 g kg−1) after aging are most apparent for boreal peats with the largest degradation in organic carbon that evolves at <140 °C, indicating the loss of high vapor pressure semi-volatile organic compounds upon aging. The highest EFLevoglucosan is found for Russian peat (~16 g kg−1), with ~35 %‒50 % degradation after aging. EFs for water-soluble OC (EFWSOC) accounts for ~20 %‒62 % of fresh EFOC. The majority (>95 %) of the total emitted carbon is in the gas phase with 54 %‒75 % CO2, followed by 8 %‒30 % CO. Nitrogen in the measured species explains 24 %‒52 % of the consumed fuel nitrogen with an average of 35 ± 11 %, consistent with past studies that report ~one- to two-thirds of the fuel nitrogen measured in biomass smoke. The majority (>99 %) of the total emitted nitrogen is in the gas phase, with an average of 16.7 % fuel N emitted as NH3 and 9.5 % of fuel N emitted as HCN. N2O and NOy constituted 5.7 % and 2.9 % of consumed fuel N. EFs from this study can be used to refine current emissions inventories.


1986 ◽  
Vol 43 (6) ◽  
pp. 1259-1270 ◽  
Author(s):  
Bruce J. Peterson ◽  
John E. Hobbie ◽  
Teresa L. Corliss

The carbon cycle of the Kuparuk River, a meandering tundra stream, is dominated by inputs of eroding peat and leaching dissolved organic carbon from the tundra. Net production of epilithic algae is about 13 g C∙m−2∙yr−1, an order of magnitude less than inputs of allochthonous particulate organic carbon and two orders of magnitude less than inputs of dissolved organic carbon. The streamwater has a mean total organic carbon concentration of 6.8 mg∙L−1, and the annual export of organic carbon from the watershed is 2–3 t∙km−2∙yr−1; both are similar to the average for temperate streams. However, because of the low primary productivity of tundra vegetation, the export of organic carbon from the watershed via the river is a larger fraction (2–6%) of the total watershed net primary production than the 0.1–0.4% usually found for temperate rivers.


2008 ◽  
Vol 5 (4) ◽  
pp. 1165-1173 ◽  
Author(s):  
R. Sempéré ◽  
M. Tedetti ◽  
C. Panagiotopoulos ◽  
B. Charrière ◽  
F. Van Wambeke

Abstract. The distribution and bacterial availability of dissolved neutral sugars were studied in the South East Pacific from October to December 2004 during the BIOSOPE cruise. Four contrasting stations were investigated: Marquesas Islands (MAR), the hyper-oligotrophic South Pacific Gyre (GYR), the eastern part of the Gyre (EGY), and the coastal waters associated to the upwelling area off Chile (UPW). Total (free and combined) dissolved neutral sugar (TDNS) concentrations were in the same order of magnitude at MAR (387±293 nM), GYR (206±107 nM), EGY (269±175 nM), and UPW (231±73 nM), with the highest and lowest concentrations found at MAR (30 m, 890 nM) and EGY (250 m, 58 nM), respectively. Their contribution to dissolved organic carbon (TDNS-C×DOC−1%) was generally low for all sites varying from 0.4% to 6.7% indicating that South East Pacific surface waters were relatively poor in neutral sugars. Free dissolved neutral sugar (FDNS; e.g. sugars analyzed without hydrolysis) concentrations were very low within the detection limit of our method (5–10 nM) accounting for <5% of the TDNS. In general, the predominant sugars within the TDNS pool were glucose, xylose, arabinose, and galactose, while in the FDNS pool only glucose was present. TDNS stock to bacterial production ratios (integrated values from the surface to the deep chlorophyll maximum) were high at GYR with respect to the low primary production, whereas the opposite trend was observed in the highly productive area of UPW. Intermediate situations were observed for MAR and EGY. Bioavailability of dissolved organic matter (DOM) exposed to natural solar radiation was also experimentally studied and compared to dark treatments. Our results showed no or little detectable effect of sunlight on DOM bacterial assimilation in surface waters of UPW and GYR, while a significant stimulation was found in MAR and EGY. The overall results clearly suggest that DOM is less labile at GYR compared to UPW, which is consistent with the observed accumulation of dissolved organic carbon and the elevated C/N ratios reported by Raimbault et al. (2008).


2017 ◽  
Author(s):  
Clémence Rose ◽  
Nadine Chaumerliac ◽  
Laurent Deguillaume ◽  
Hélène Perroux ◽  
Camille Mouchel-Vallon ◽  
...  

Abstract. The new detailed aqueous phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added di-carboxylic acids dissolved from the particulate phase. The resulting coupled model allows for predicting the aqueous phase concentrations of chemical compounds originating from particle dissolution, mass transfer from the gas phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle dissolution on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of the puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3–C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.


2021 ◽  
Author(s):  
Simon Rosanka ◽  
Rolf Sander ◽  
Bruno Franco ◽  
Catherine Wespes ◽  
Andreas Wahner ◽  
...  

&lt;p&gt;Large parts of the troposphere are affected by clouds, whose aqueous-phase chemistry differs significantly from gas-phase chemistry. Box-model studies have demonstrated that clouds influence the tropospheric oxidation capacity. However, most global atmospheric models do not represent this chemistry reasonably well and are largely limited to sulfur oxidation. Therefore, we have developed the J&amp;#252;lich Aqueous-phase Mechanism of Organic Chemistry (JAMOC), making a detailed in-cloud oxidation model of oxygenated volatile organic compounds (OVOCs) readily available for box as well as for regional and global simulations that are affordable with modern supercomputers. JAMOC includes the phase transfer of species containing up to ten carbon atoms, and the aqueous-phase reactions of a selection of species containing up to four carbon atoms, e.g., ethanol, acetaldehyde, glyoxal. The impact of in-cloud chemistry on tropospheric composition is assessed on a regional and global scale by performing a combination of box-model studies using the Chemistry As A Boxmodel Application (CAABA) and the global atmospheric model ECHAM/MESSy (EMAC). These models are capable to represent the described processes explicitly and integrate the corresponding ODE system with a Rosenbrock solver.&amp;#160;&lt;/p&gt;&lt;p&gt;Overall, the explicit in-cloud oxidation leads to a reduction of predicted OVOCs levels. By comparing EMAC's prediction of methanol abundance to spaceborne retrievals from the Infrared Atmospheric Sounding Interferometer (IASI), a reduction in EMAC's overestimation is observed in the tropics. Further, the in-cloud OVOC oxidation shifts the hydroperoxyl radicals (HO&lt;sub&gt;2&lt;/sub&gt;) production from the gas- to the aqueous-phase. As a result, the in-cloud destruction (scavenging) of ozone (O&lt;sub&gt;3&lt;/sub&gt;) by the superoxide anion (O&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;) is enhanced and accompanied by a reduction in both sources and sinks of tropospheric O&lt;sub&gt;3&lt;/sub&gt; in the gas phase. By considering only the in-cloud sulfur oxidation by O&lt;sub&gt;3&lt;/sub&gt;, about 13 Tg a&lt;sup&gt;-1&lt;/sup&gt; of O&lt;sub&gt;3&lt;/sub&gt; are scavenged, which increases to 336 Tg a&lt;sup&gt;-1&lt;/sup&gt; when JAMOC is used. With the full oxidation scheme, the highest O&lt;sub&gt;3&lt;/sub&gt; reduction of 12 % is predicted in the upper troposphere/lower stratosphere (UTLS). Based on the IASI O&lt;sub&gt;3&lt;/sub&gt; retrievals, it is demonstrated that these changes in the free troposphere significantly reduce the modelled tropospheric O&lt;sub&gt;3&lt;/sub&gt; columns, which are known to be generally overestimated by global atmospheric models. Finally, the relevance of aqueous-phase oxidation of organics for ozone in hazy polluted regions will be presented. &amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document