scholarly journals A low-mass triple system with a wide L/T transition brown dwarf component: NLTT 51469AB/SDSS 2131−0119

2019 ◽  
Vol 487 (1) ◽  
pp. 1149-1159 ◽  
Author(s):  
B Gauza ◽  
V J S Béjar ◽  
A Pérez-Garrido ◽  
N Lodieu ◽  
R Rebolo ◽  
...  

Abstract We demonstrate that the previously identified L/T transition brown dwarf SDSS J213154.43−011939.3 (SDSS 2131−0119) is a widely separated (82${^{\prime\prime}_{.}}$3, ∼3830 au) common proper motion companion to the low-mass star NLTT 51469, which we reveal to be a close binary itself, separated by 0${^{\prime\prime}_{.}}$64 ± 0${^{\prime\prime}_{.}}$01 (∼30 au). We find the proper motion of SDSS 2131−0119 of μαcos δ = −100 ± 20 mas yr−1 and μδ = −230 ± 20 mas yr−1 consistent with the proper motion of the primary provided by Gaia DR2: μαcos δ = −95.49 ± 0.96 mas yr−1 and μδ = −239.38 ± 0.96 mas yr−1. Based on optical and near-infrared spectroscopy, we classify the primary NLTT 51469A as an M3 ± 1 dwarf, estimate photometrically the spectral type of its close companion NLTT 51469B at ∼M6, and confirm the spectral type of the brown dwarf to be L9 ± 1. Using radial velocity, proper motion, and parallax, we derived the UVW Galactic space velocities of NLTT 51469A, showing that the system does not belong to any known young stellar moving group. The high V, W velocities, lack of a 670.8 nm Li i absorption line, and absence of H α emission, detected X-rays, or UV excess, indicate that the system is likely a member of the thin disc population and is older than 1 Gyr. For the parallactic distance of 46.6 ± 1.6 pc from Gaia DR2, we determined luminosities of $-1.50^{+0.02}_{-0.04}$ and −4.4 ± 0.1 dex of the M3 and L9, respectively. Considering the spectrophotometric estimation, which yields a slightly lower distance of $34^{+10}_{-13}$ pc, the obtained luminosities are $-1.78^{+0.02}_{-0.04}$ and $-4.7^{+0.3}_{-0.5}$ dex. We also estimated their effective temperatures and masses, and obtained 3410$^{+140}_{-210}$ K and 0.42 ± 0.02 M⊙ for the primary, and 1400–1650 K and 0.05–0.07 M⊙ for the wide companion. For the ∼M6 component, we estimated Teff = 2850 ± 200 K and m = 0.10$^{+0.06}_{-0.01}$ M⊙.

2003 ◽  
Vol 211 ◽  
pp. 261-264 ◽  
Author(s):  
Melanie Freed ◽  
Laird M. Close ◽  
Nick Siegler

Using the adaptive optics system, Hōkūpa'a, at Gemini-North, we have directly imaged a companion around the UKIRT faint standard M8 star, LHS 2397a (FS 129) at a separation of 2.96 AU. Near-Infrared photometry obtained on the companion has shown it to be an L7.5 brown dwarf and confirmed the spectral type of the primary to be an M8. We also derive a substellar mass of the companion of 0.068M⊙, although masses in the range (0.061 – 0.069) are possible, and the primary mass as 0.090M⊙ (0.089 – 0.094). Reanalysis of archival imaging from HST has confirmed the secondary as a common proper motion object. This binary represents the first clear example of a brown dwarf companion within 4 AU of a low mass star, and should be the first L7.5 to have a dynamical mass. As part of a larger survey of M8-M9 stars, this object may indicate that there is no “brown dwarf desert” around low mass primaries.


2018 ◽  
Vol 619 ◽  
pp. A31 ◽  
Author(s):  
R.-D. Scholz ◽  
H. Meusinger ◽  
A. Schwope ◽  
H. Jahreiß ◽  
I. Pelisoli

Aims. With our low-resolution spectroscopic observing programme for selected blue proper motion stars, we tried to find new white dwarfs (WDs) in the solar neighbourhood. Methods. We used the Lépine & Shara Proper Motion (LSPM) catalogue with a lower proper motion limit of 150 mas yr−1 and the Second US Naval Observatory CCD Astrograph Catalog (UCAC2) for proper motions down to about 90 mas yr−1. The LSPM and UCAC2 photometry was combined with Two Micron All Sky Survey (2MASS) near-infrared (NIR) photometry. Targets selected according to their blue optical-to-NIR and NIR colours were observed mainly at Calar Alto. The spectra were classified by comparison with a large number of already known comparison objects, including WDs, simultaneously observed within our programme. Gaia DR2 parallaxes and colours were used to confirm or reject spectroscopic WD candidates and to derive improved effective temperatures. Results. We found ten new WDs at distances between 24.4 pc and 79.8 pc, including six hot DA WDs: GD 221 (DA2.0), HD 166435 B (DA2.2), GD 277 (DA2.2), 2MASS J19293865+1117523 (DA2.4), 2MASS J05280449+4105253 (DA3.6), and 2MASS J05005185-0930549 (DA4.2). The latter is rather bright (G ≍ 12.6) and with its Gaia DR2 parallax of ≍14 mas it appears overluminous by about 3 mag compared to the WD sequence in the Gaia DR2 colour-magnitude diagram. It may be the closest extremely low mass (ELM) WD to the Sun. We further classified 2MASS J07035743+2534184 as DB4.1. With its distance of 25.6 pc it is the second nearest known representative of its class. With GD 28 (DA6.1), LP 740-47 (DA7.5), and LSPM J1919+4527 (DC10.3) three additional cool WDs were found. Gaia DR2 parallaxes show that four of our candidates, but also two previously supposed WDs (WD 1004+665 and LSPM J1445+2527) are in fact distant Galactic halo stars with high tangential velocities. Among our rejected WD candidates, we identified a bright (G = 13.4 mag) G-type carbon dwarf, LSPM J0937+2803, at a distance of 272 pc.


2012 ◽  
Vol 753 (2) ◽  
pp. 156 ◽  
Author(s):  
J. Davy Kirkpatrick ◽  
Christopher R. Gelino ◽  
Michael C. Cushing ◽  
Gregory N. Mace ◽  
Roger L. Griffith ◽  
...  

2018 ◽  
Vol 615 ◽  
pp. A148 ◽  
Author(s):  
Francesco Damiani

Context. The low-mass members of OB associations, expected to be a major component of their total population, are in most cases poorly studied because of the difficulty of selecting these faint stars in crowded sky regions. Our knowledge of many OB associations relies on only a relatively small number of massive members. Aims. We study here the Sco OB1 association, with the aim of a better characterization of its properties, such as global size and shape, member clusters and their morphology, age and formation history, and total mass. Methods. We use deep optical and near-infrared (NIR) photometry from the VPHAS+ and VVV surveys, over a wide area (2.6° × 2.6°), complemented by Spitzer infrared (IR) data, and Chandra and XMM-Newton X-ray data. A new technique is developed to find clusters of pre-main sequence M-type stars using suitable color-color diagrams, complementing existing selection techniques using narrow-band Hα photometry or NIR and ultraviolet (UV) excesses, and X-ray data. Results. We find a large population of approximately 4000 candidate low-mass Sco OB1 members whose spatial properties correlate well with those of Hα-emission, NIR-excess, UV-excess, and X-ray detected members, and unresolved X-ray emission. The low-mass population is spread among several interconnected subgroups: they coincide with the HII regions G345.45+1.50 and IC4628, and the rich clusters NGC 6231 and Trumpler 24, with an additional subcluster intermediate between these two. The total mass of Sco OB1 is estimated to be ~ 8500 M⊙. Indication of a sequence of star-formation events is found, from South (NGC 6231) to North (G345.45+1.50). We suggest that the diluted appearance of Trumpler 24 indicates that the cluster is now dissolving into the field, and that tidal stripping by NGC 6231 nearby contributes to the process.


2003 ◽  
Vol 211 ◽  
pp. 87-90
Author(s):  
M. Tamura ◽  
T. Naoi ◽  
Y. Oasa ◽  
Y. Nakajima ◽  
C. Nagashima ◽  
...  

We are currently conducting three kinds of IR surveys of star forming regions (SFRs) in order to seek for very low-mass young stellar populations. First is a deep JHKs-bands (simultaneous) survey with the SIRIUS camera on the IRSF 1.4m or the UH 2.2m telescopes. Second is a very deep JHKs survey with the CISCO IR camera on the Subaru 8.2m telescope. Third is a high resolution companion search around nearby YSOs with the CIAO adaptive optics coronagraph IR camera on the Subaru. In this contribution, we describe our SIRIUS camera and present preliminary results of the ongoing surveys with this new instrument.


2019 ◽  
Vol 486 (2) ◽  
pp. 2254-2264 ◽  
Author(s):  
A Dieball ◽  
L R Bedin ◽  
C Knigge ◽  
M Geffert ◽  
R M Rich ◽  
...  

ABSTRACT We present an analysis of the second epoch Hubble Space TelescopeWide Field Camera 3 F110W near-infrared (NIR) imaging data of the globular cluster M 4. The new data set suggests that one of the previously suggested four brown dwarf candidates in this cluster is indeed a high-probability cluster member. The position of this object in the NIR colour–magnitude diagrams (CMDs) is in the white dwarf/brown dwarf area. The source is too faint to be a low-mass main-sequence (MS) star, but, according to theoretical considerations, also most likely somewhat too bright to be a bona-fide brown dwarf. Since we know that the source is a cluster member, we determined a new optical magnitude estimate at the position the source should have in the optical image. This new estimate places the source closer to the white dwarf sequence in the optical–NIR CMD and suggests that it might be a very cool (Teff ≤ 4500 K) white dwarf at the bottom of the white dwarf cooling sequence in M 4, or a white dwarf/brown dwarf binary. We cannot entirely exclude the possibility that the source is a very massive, bright brown dwarf, or a very low-mass MS star, however, we conclude that we still have not convincingly detected a brown dwarf in a globular cluster, but we expect to be very close to the start of the brown dwarf cooling sequence in this cluster. We also note that the MS ends at F110W ≈ 22.5 mag in the proper-motion cleaned CMDs, where completeness is still high.


2019 ◽  
Vol 624 ◽  
pp. A101 ◽  
Author(s):  
Daniele Locci ◽  
Cesare Cecchi-Pestellini ◽  
Giuseppina Micela

Context. X-rays and extreme ultraviolet radiation impacting a gas produce a variety of effects that, depending on the electron content, may provide significant heating of the illuminated region. In a planetary atmosphere of solar composition, stellar high energy radiation can heat the gas to very high temperatures and this could affect the stability of planetary atmospheres, in particular for close-in planets. Aims. We investigate the variations with stellar age in the occurring frequency of gas giant planets orbiting G and M stars, taking into account that the high energy luminosity of a low mass star evolves in time, both in intensity and hardness. Methods. Using the energy-limited escape approach we investigated the effects induced by the atmospheric mass loss on giant exoplanet distribution that is initially flat, at several distances from the parent star. We followed the dynamical evolution of the planet atmosphere, tracking the departures from the initial profile due to the atmospheric escape, until it reaches the final mass-radius configuration. Results. We find that a significant fraction of low mass Jupiter-like planets orbiting with periods lower than ~3.5 days either vaporize during the first billion years or lose a relevant part of their atmospheres. The planetary initial mass profile is significantly distorted; in particular, the frequency of occurrence of gas giants, less massive than 2 MJ, around young stars can be considerably greater than their occurrence around older stellar counterparts.


2019 ◽  
Vol 488 (2) ◽  
pp. 1635-1651 ◽  
Author(s):  
M S Angelo ◽  
A E Piatti ◽  
W S Dias ◽  
F F S Maia

Abstract The study of dynamical properties of Galactic open clusters (OCs) is a fundamental prerequisite for the comprehension of their dissolution processes. In this work, we characterized 12 OCs, namely: Collinder 258, NGC 6756, Czernik 37, NGC 5381, Ruprecht 111, Ruprecht 102, NGC 6249, Basel 5, Ruprecht 97, Trumpler 25, ESO 129−SC32, and BH 150, projected against dense stellar fields. In order to do that, we employed Washington CT1 photometry and Gaia DR2 astrometry, combined with a decontamination algorithm applied to the three-dimensional astrometric space of proper motions and parallaxes. From the derived membership likelihoods, we built decontaminated colour–magnitude diagrams, while structural parameters were obtained from King profiles fitting. Our analysis revealed that they are relatively young OCs (log(t  yr−1) ∼7.3–8.6), placed along the Sagittarius spiral arm, and at different internal dynamical stages. We found that the half-light radius to Jacobi radius ratio, the concentration parameter and the age to relaxation time ratio describe satisfactorily their different stages of dynamical evolution. Those relative more dynamically evolved OCs have apparently experienced more important low-mass star loss.


2003 ◽  
Vol 587 (1) ◽  
pp. 407-422 ◽  
Author(s):  
Laird M. Close ◽  
Nick Siegler ◽  
Melanie Freed ◽  
Beth Biller

2003 ◽  
Vol 211 ◽  
pp. 179-180
Author(s):  
Nicolas Lodieu ◽  
Mark McCaughrean ◽  
Jérôme Bouvier ◽  
David Barrado y Navascués ◽  
John R. Stauffer

We present preliminary results from a deep near-infrared survey of a ~ 1 square degree area in the young open cluster Alpha Persei using the wide-field Omega-Prime camera on the Calar Alto 3.5m telescope, yielding a list of new low-mass cluster members, including brown dwarf candidates.


Sign in / Sign up

Export Citation Format

Share Document