scholarly journals The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations

2019 ◽  
Vol 487 (1) ◽  
pp. 1380-1399 ◽  
Author(s):  
Shea Garrison-Kimmel ◽  
Philip F Hopkins ◽  
Andrew Wetzel ◽  
James S Bullock ◽  
Michael Boylan-Kolchin ◽  
...  

Abstract We present a new set of high-resolution hydrodynamic cosmological zoom-in simulations that apply the Feedback In Realistic Environments physics to both Local Group (LG)-like and isolated Milky Way (MW)-like volumes (10 host systems in total with a baryonic particle mass ${\simeq } 3500\!-\!7000\,{\rm M}_\odot$). We study the stellar mass functions, circular velocity or mass profiles, and velocity dispersions of the dwarf galaxy populations. The simulations reproduce the stellar mass function and central densities of MW satellite dwarfs for $M_\ast \ge 10^{5.5}\,{\rm M}_\odot$ and predict the existence of ∼3 unidentified galaxies with $M_\ast \sim 10^5\,{\rm M}_\odot$ within 300 kpc of the MW. Overall, we find no evidence for the classical missing satellites or too-big-to-fail (TBTF) problems for satellite galaxies in our sample. Among the satellites, TBTF is resolved primarily by subhalo disruption and overall mass-loss; central density profiles of subhaloes are of secondary importance. For non-satellite galaxies, our LG-like simulations predict as many as ∼10 as-of-yet unseen galaxies at distances $0.3\!-\!1\, \mathrm{Mpc}$ from both hosts, with $M_\ast \simeq 10^{5-6}\,{\rm M}_\odot$ (in haloes with Vmax ∼ 20 km s−1), albeit with large halo-to-halo variance. None of our simulations produces a compact, baryon-dominated, high-density dwarf elliptical-type galaxy (with Vcirc ≳ 35 km s−1 at $r\lt 1\,$ kpc), of which six may appear in the LG (but none in the MW). It may therefore remain a challenge to reproduce the full diversity of the dwarf population, including both the highest and lowest density systems.

2018 ◽  
Vol 614 ◽  
pp. A43 ◽  
Author(s):  
Sami Dib ◽  
Shantanu Basu

We investigate the dependence of a single-generation galactic mass function (SGMF) on variations in the initial stellar mass functions (IMF) of stellar clusters. We show that cluster-to-cluster variations of the IMF lead to a multi-component SGMF where each component in a given mass range can be described by a distinct power-law function. We also show that a dispersion of ≈0.3 M⊙ in the characteristic mass of the IMF, as observed for young Galactic clusters, leads to a low-mass slope of the SGMF that matches the observed Galactic stellar mass function even when the IMFs in the low-mass end of individual clusters are much steeper.


Author(s):  
Aldo Rodríguez-Puebla ◽  
A. R. Calette ◽  
Vladimir Avila-Reese ◽  
Vicente Rodriguez-Gomez ◽  
Marc Huertas-Company

Abstract We report the bivariate $\rm HI$ - and $\rm H_{2}$ -stellar mass distributions of local galaxies in addition of an inventory of galaxy mass functions, MFs, for $\rm HI$ , $\rm H_{2}$ , cold gas, and baryonic mass, separately into early- and late-type galaxies. The MFs are determined using the $\rm HI$ and $\rm H_{2}$ conditional distributions and the galaxy stellar mass function (GSMF). For the conditional distributions we use the results from the compilation presented in Calette et al. [(2018) RMxAA, 54, 443.]. For determining the GSMF from $M_{*}\sim3\times10^{7}$ to $3\times10^{12}\ \text{M}_{\odot}$ , we combine two spectroscopic samples from the Sloan Digital Sky Survey at the redshift range $0.0033<z<0.2$ . We find that the low-mass end slope of the GSMF, after correcting from surface brightness incompleteness, is $\alpha\approx-1.4$ , consistent with previous determinations. The obtained $\rm HI\,$ MFs agree with radio blind surveys. Similarly, the $\rm H_{2}\,$ MFs are consistent with CO follow-up optically-selected samples. We estimate the impact of systematics due to mass-to-light ratios and find that our MFs are robust against systematic errors. We deconvolve our MFs from random errors to obtain the intrinsic MFs. Using the MFs, we calculate cosmic density parameters of all the baryonic components. Baryons locked inside galaxies represent 5.4% of the universal baryon content, while $\sim\! 96\%$ of the $\rm HI$ and $\rm H_{2}$ mass inside galaxies reside in late-type morphologies. Our results imply cosmic depletion times of $\rm H_{2}$ and total neutral H in late-type galaxies of $\sim\!1.3$ and 7.2 Gyr, respectively, which shows that late type galaxies are on average inefficient in converting $\rm H_{2}$ into stars and in transforming $\rm HI$ gas into $\rm H_{2}$ . Our results provide a fully self-consistent empirical description of galaxy demographics in terms of the bivariate gas–stellar mass distribution and their projections, the MFs. This description is ideal to compare and/or to constrain galaxy formation models.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Douglas Rubin ◽  
Abraham Loeb

The dense concentration of stars and high-velocity dispersions in the Galactic center imply that stellar collisions frequently occur. Stellar collisions could therefore result in significant mass loss rates. We calculate the amount of stellar mass lost due to indirect and direct stellar collisions and find its dependence on the present-day mass function of stars. We find that the total mass loss rate in the Galactic center due to stellar collisions is sensitive to the present-day mass function adopted. We use the observed diffuse X-ray luminosity in the Galactic center to preclude any present-day mass functions that result in mass loss rates>10-5M⨀yr−1in the vicinity of~1″. For present-day mass functions of the form,dN/dM∝M-α, we constrain the present-day mass function to have a minimum stellar mass≲7M⨀and a power-law slope≳1.25. We also use this result to constrain the initial mass function in the Galactic center by considering different star formation scenarios.


2018 ◽  
Vol 617 ◽  
pp. A33 ◽  
Author(s):  
P. Andreani ◽  
A. Boselli ◽  
L. Ciesla ◽  
R. Vio ◽  
L. Cortese ◽  
...  

Aims.We discuss the results of the relationships between theK-band and stellar mass, FIR luminosities, star formation rate, and the masses of the dust and gas of nearby galaxies computing the bivariateK-band-luminosity function (BLF) and bivariateK-band-mass function (BMF) of theHerschelReference Survey (HRS), a volume-limited sample with full wavelength coverage.Methods.We derive the BLFs and BMFs from theK-band and stellar mass, FIR luminosities, star formation rate, dust and gas masses cumulative distributions using a copula method, which is outlined in detail. The use of the computed bivariate taking into account the upper limits allows us to derive a more solid statistical ground for the relationship between the observed physical quantities.Results.The analysis shows that the behaviour of the morphological (optically selected) subsamples is quite different. A statistically meaningful result can be obtained over the whole HRS sample only from the relationship between theK-band and the stellar mass, while for the remaining physical quantities (dust and gas masses, far-infrared luminosity, and star formation rate), the analysis is distinct for late-type (LT) and early-type galaxies (ETG). However, the number of ETGs is small to perform a robust statistical analysis, and in most of the case results are discussed only for the LTG subsample. The luminosity and mass functions (LFs, MFs) of LTGs are generally dependent on theK-band and the various dependencies are discussed in detail. We are able to derive the corresponding LFs and MFs and compare them with those computed with other samples. Our statistical analysis allows us to characterise the HRS which, although non-homogeneously selected and partially biased towards low IR luminosities, may be considered as representative of the local LT galaxy population.


2008 ◽  
Vol 4 (S254) ◽  
pp. 469-474
Author(s):  
Simon P. Driver ◽  

AbstractThe GAMA survey aims to deliver 250,000 optical spectra (3–7 Å resolution) over 250 sq. degrees to spectroscopic limits of rAB < 19.8 and KAB < 17.0 mag. Complementary imaging will be provided by GALEX, VST, UKIRT, VISTA, HERSCHEL and ASKAP to comparable flux levels leading to a definitive multi-wavelength galaxy database. The data will be used to study all aspects of cosmic structures on 1kpc to 1Mpc scales spanning all environments and out to a redshift limit of z ≈ 0.4. Key science drivers include the measurement of: the halo mass function via group velocity dispersions; the stellar, HI, and baryonic mass functions; galaxy component mass-size relations; the recent merger and star-formation rates by mass, types and environment. Detailed modeling of the spectra, broad SEDs, and spatial distributions should provide individual star formation histories, ages, bulge-disc decompositions and stellar bulge, stellar disc, dust disc, neutral HI gas and total dynamical masses for a significant subset of the sample (~ 100k) spanning both the giant and dwarf galaxy populations. The survey commenced March 2008 with 50k spectra obtained in 21 clear nights using the Anglo Australian Observatory's new multi-fibre-fed bench-mounted dual-beam spectroscopic system (AAΩ).


2020 ◽  
Vol 638 ◽  
pp. A112 ◽  
Author(s):  
Remco F. J. van der Burg ◽  
Gregory Rudnick ◽  
Michael L. Balogh ◽  
Adam Muzzin ◽  
Chris Lidman ◽  
...  

We study the stellar mass functions (SMFs) of star-forming and quiescent galaxies in 11 galaxy clusters at 1.0 < z < 1.4 drawn from the Gemini Observations of Galaxies in Rich Early ENvironments (GOGREEN) survey. Based on more than 500 h of Gemini/GMOS spectroscopy and deep multi-band photometry taken with a range of observatories, we probe the SMFs down to a stellar mass limit of 109.7 M⊙ (109.5 M⊙ for star-forming galaxies). At this early epoch, the fraction of quiescent galaxies is already highly elevated in the clusters compared to the field at the same redshift. The quenched fraction excess (QFE) represents the fraction of galaxies that would be star-forming in the field but are quenched due to their environment. The QFE is strongly mass dependent, and increases from ∼30% at M⋆ = 109.7 M⊙ to ∼80% at M⋆ = 1011.0 M⊙. Nonetheless, the shapes of the SMFs of the two individual galaxy types, star-forming and quiescent galaxies, are identical between cluster and field to high statistical precision. Nevertheless, along with the different quiescent fractions, the total galaxy SMF is also environmentally dependent, with a relative deficit of low-mass galaxies in the clusters. These results are in stark contrast with findings in the local Universe, and therefore require a substantially different quenching mode to operate at early times. We discuss these results in light of several popular quenching models.


2019 ◽  
Vol 490 (4) ◽  
pp. 5538-5550 ◽  
Author(s):  
Saundra M Albers ◽  
Daniel R Weisz ◽  
Andrew A Cole ◽  
Andrew E Dolphin ◽  
Evan D Skillman ◽  
...  

ABSTRACT We present the star formation history (SFH) of the isolated (D ∼ 970 kpc) Local Group dwarf galaxy Wolf–Lundmark–Melotte (WLM) measured from colour–magnitude diagrams (CMDs) constructed from deep Hubble Space Telescope imaging. Our observations include a central ($0.5 \, r_h$) and outer field ($0.7 \, r_h$) that reach below the oldest main-sequence turn-off. WLM has no early dominant episode of star formation: 20 per cent of its stellar mass formed by ∼12.5 Gyr ago ($z$ ∼ 5). It also has an SFR that rises to the present with 50 per cent of the stellar mass within the most recent 5 Gyr ($z$ &lt; 0.7). There is evidence of a strong age gradient: the mean age of the outer field is 5 Gyr older than the inner field despite being only 0.4 kpc apart. Some models suggest such steep gradients are associated with strong stellar feedback and dark-matter core creation. The SFHs of real isolated dwarf galaxies and those from the Feedback in Realistic Environment suite are in good agreement for M⋆($z$ = 0) ∼ 107–109M⊙, but in worse agreement at lower masses ($M_{\star }(z=0) \sim 10^5\!-\!10^7 \, \mathrm{M}_{\odot }$). These differences may be explainable by systematics in the models (e.g. reionization model) and/or observations (HST field placement). We suggest that a coordinated effort to get deep CMDs between HST/JWST (crowded central fields) and WFIRST (wide-area halo coverage) is the optimal path for measuring global SFHs of isolated dwarf galaxies.


1999 ◽  
Vol 192 ◽  
pp. 409-419 ◽  
Author(s):  
Mike Irwin

Many direct attempts to measure the proper motions of Galactic satellite galaxies are either in progress or have recently been completed. In this review I will summarise and examine the current state of knowledge in this field and will also highlight several indirect methods that can be used as alternative estimators or constraints on the proper motions of satellite galaxies throughout the Local Group. A good example of this latter approach is provided by the Sagittarius dwarf galaxy, where ongoing tidal disruption of the system has left a giant arc of debris tracing out its orbital path.


Sign in / Sign up

Export Citation Format

Share Document