scholarly journals Disc formation in magnetized dense cores with turbulence and ambipolar diffusion

2019 ◽  
Vol 489 (4) ◽  
pp. 5326-5347 ◽  
Author(s):  
Ka Ho Lam ◽  
Zhi-Yun Li ◽  
Che-Yu Chen ◽  
Kengo Tomida ◽  
Bo Zhao

ABSTRACT Discs are essential to the formation of both stars and planets, but how they form in magnetized molecular cloud cores remains debated. This work focuses on how the disc formation is affected by turbulence and ambipolar diffusion (AD), both separately and in combination, with an emphasis on the protostellar mass accretion phase of star formation. We find that a relatively strong, sonic turbulence on the core scale strongly warps but does not completely disrupt the well-known magnetically induced flattened pseudo-disc that dominates the inner protostellar accretion flow in the laminar case, in agreement with previous work. The turbulence enables the formation of a relatively large disc at early times with or without AD, but such a disc remains strongly magnetized and does not persist to the end of our simulation unless a relatively strong AD is also present. The AD-enabled discs in laminar simulations tend to fragment gravitationally. The disc fragmentation is suppressed by initial turbulence. The AD facilitates the disc formation and survival by reducing the field strength in the circumstellar region through magnetic flux redistribution and by making the field lines there less pinched azimuthally, especially at late times. We conclude that turbulence and AD complement each other in promoting disc formation. The discs formed in our simulations inherit a rather strong magnetic field from its parental core, with a typical plasma-β of order a few tens or smaller, which is 2–3 orders of magnitude lower than the values commonly adopted in magnetohydrodynamic simulations of protoplanetary discs. To resolve this potential tension, longer term simulations of disc formation and evolution with increasingly more realistic physics are needed.

2001 ◽  
Vol 200 ◽  
pp. 391-400 ◽  
Author(s):  
Shu-ichiro Inutsuka ◽  
Toru Tsuribe

The formation and evolution processes of magnetized filamentary molecular clouds are investigated in detail by linear stability analyses and non-linear numerical calculations. A one-dimensionally compressed self-gravitating sheet-like cloud breaks up into filamentary clouds. The directions of the longitudinal axes of the resulting filaments are perpendicular to the directions of magnetic field lines unless the column density of the sheet is very small. These magnetized filaments tend to collapse radially without characteristic density, length, and mass scale for the further fragmentation during the isothermal phase. The characteristic minimum mass for the final fragmentation is obtained by the investigation of thermal processes. The essential points of the above processes are analytically explained in terms of the basic physics. A theory for the expected mass function of dense molecular cloud cores is obtained. The expected mean surface density of companions of dense cores is also discussed.


1991 ◽  
Vol 147 ◽  
pp. 93-99
Author(s):  
Sheo S. Prasad

Chemical considerations and simplified dynamical modeling suggest that dark cloud cores may be incessantly evolving such that the time spent at high core densities decreases as the density increases. After reaching a high density, gravitationally contracting dark cloud cores may either form stars or expand to states of lower densities. Cloud mass and initial density are amongst the factors that may control the evolutionary fate of the core. This view is diametrically opposite of the common belief that dense cores may be in near mechanical equilibrium. Mutually consistent end-to-end modeling of the spectral line profiles and intensities is needed to discern the reality.


1990 ◽  
Vol 138 ◽  
pp. 391-394
Author(s):  
A.E. Dudorov ◽  
V.N. Krivodubskij ◽  
A.A. Ruzmaikin ◽  
T.V. Ruzmaikina

The behaviour of the magnetic field during the formation and evolution of the Sun is investigated. It is shown that an internal poloidal magnetic field of the order of 104 − 105 G near the core of the Sun may be compatible with differential rotation and with torsional waves, travelling along the magnetic field lines (Dudorov et al., 1989).


1991 ◽  
Vol 147 ◽  
pp. 93-99
Author(s):  
Sheo S. Prasad

Chemical considerations and simplified dynamical modeling suggest that dark cloud cores may be incessantly evolving such that the time spent at high core densities decreases as the density increases. After reaching a high density, gravitationally contracting dark cloud cores may either form stars or expand to states of lower densities. Cloud mass and initial density are amongst the factors that may control the evolutionary fate of the core. This view is diametrically opposite of the common belief that dense cores may be in near mechanical equilibrium. Mutually consistent end-to-end modeling of the spectral line profiles and intensities is needed to discern the reality.


Author(s):  
Juan Martínez-Sykora ◽  
Bart De Pontieu ◽  
Viggo Hansteen ◽  
Mats Carlsson

The energy for the coronal heating must be provided from the convection zone. However, the amount and the method by which this energy is transferred into the corona depend on the properties of the lower atmosphere and the corona itself. We review: (i) how the energy could be built in the lower solar atmosphere, (ii) how this energy is transferred through the solar atmosphere, and (iii) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion–neutral interaction effects in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative magnetohydrodynamic simulations with the Bifrost code (Gudiksen et al. 2011 Astron. Astrophys. 531 , A154 ( doi:10.1051/0004-6361/201116520 )) including the partial ionization effects on the chromosphere and corona and thermal conduction along magnetic field lines. The photosphere, chromosphere and transition region are partially ionized and the interaction between ionized particles and neutral particles has important consequences on the magneto-thermodynamics of these layers. The partial ionization effects are treated using generalized Ohm's law, i.e. we consider the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. The interaction between the different species affects the modelled atmosphere as follows: (i) the ambipolar diffusion dissipates magnetic energy and increases the minimum temperature in the chromosphere and (ii) the upper chromosphere may get heated and expanded over a greater range of heights. These processes reveal appreciable differences between the modelled atmospheres of simulations with and without ion–neutral interaction effects.


2012 ◽  
Vol 08 ◽  
pp. 364-367
Author(s):  
YOSUKE MIZUNO ◽  
MARTIN POHL ◽  
JACEK NIEMIEC ◽  
BING ZHANG ◽  
KEN-ICHI NISHIKAWA ◽  
...  

We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that the so-called small-scale dynamo is occurring in the postshock region. We also find that the amplitude of magnetic-field amplification depends on the direction of the mean preshock magnetic field.


2018 ◽  
Vol 618 ◽  
pp. A87 ◽  
Author(s):  
E. Khomenko ◽  
N. Vitas ◽  
M. Collados ◽  
A. de Vicente

In recent decades, REALISTIC three-dimensional radiative-magnetohydrodynamic simulations have become the dominant theoretical tool for understanding the complex interactions between the plasma and magnetic field on the Sun. Most of such simulations are based on approximations of magnetohydrodynamics, without directly considering the consequences of the very low degree of ionization of the solar plasma in the photosphere and bottom chromosphere. The presence of a large amount of neutrals leads to a partial decoupling of the plasma and magnetic field. As a consequence, a series of non-ideal effects, i.e., the ambipolar diffusion, Hall effect, and battery effect, arise. The ambipolar effect is the dominant in the solar chromosphere. We report on the first three-dimensional realistic simulations of magneto-convection including ambipolar diffusion and battery effects. The simulations are carried out using the newly developed MANCHA3Dcode. Our results reveal that ambipolar diffusion causes measurable effects on the amplitudes of waves excited by convection in the simulations, on the absorption of Poynting flux and heating, and on the formation of chromospheric structures. We provide a low limit on the chromospheric temperature increase owing to the ambipolar effect using the simulations with battery-excited dynamo fields.


2022 ◽  
pp. 247-280
Author(s):  
Vernon F. Cormier ◽  
Michael I. Bergman ◽  
Peter L. Olson

1991 ◽  
Vol 147 ◽  
pp. 205-209
Author(s):  
Bruce G. Elmegreen

The broad line wings in molecular cloud spectra are proposed to result from strong magnetic waves on the periphery of dense cores and in the intercore regions where the Alfvén velocity should be larger than average. The observed line profiles are reproduced by a simple but realistic model, and the ratio of the broad to the narrow line components is found to equal approximately three, independent of cloud parameters, as long as the core/intercore contrast in the local average density is sufficiently large. Interactions between the magnetic waves should produce dense clumps in the non-linear splash regions between converging flows.


1996 ◽  
Vol 160 ◽  
pp. 229-230 ◽  
Author(s):  
R.C. Kapoor ◽  
C.S. Shukre

We have analysed the dipole magnetic field geometry for the general case of an oblique rotator and have found that open field lines which define the polar cap divide into two branches (Kapoor and Shukre 1996) which appear naturally relevant for distinguishing the core and conal emissions. The polar cap shape is actually determined by a quadratic equation having two roots leading to two values of the polar angle,θ+andθ−with respect to the magnetic axis for a given azimuth φ. For the north pole bothθ+andθ−branches are shown as polar plots in Fig. 1 for various inclination angles α and a typical pulsar period. The discussion of pulsar polar caps hitherto (e.g. Biggs 1990) had not distinguished between theθ+and theθ−solutions. The region defined by theθ+solution is completely contained inside the polar cap. It has a peculiar triangular shape whose lowest vertex is always on the magnetic axis. This naturally suggests an identification of theθ+and theθ−regions with the core and conal emission zones.


Sign in / Sign up

Export Citation Format

Share Document