scholarly journals On the gravitational field of a point-like body immersed in a quantum vacuum

2019 ◽  
Vol 491 (4) ◽  
pp. 4816-4828 ◽  
Author(s):  
Dragan Slavkov Hajdukovic

ABSTRACT Quantum vacuum and the matter immersed in it interact through electromagnetic, strong and weak interactions. However, we have zero knowledge of the gravitational properties of the quantum vacuum. As an illustration of the possible fundamental gravitational impact of the quantum vacuum, we study the gravitational field of an immersed point-like body. This is done under the working hypothesis, that quantum vacuum fluctuations are virtual gravitational dipoles (i.e. two gravitational charges of the same magnitude but opposite sign); coincidentally, this hypothesis makes quantum vacuum free of the cosmological constant problem. The major result is that a point-like body creates a halo of polarized quantum vacuum around itself, which acts as an additional source of gravity. There is a maximal magnitude ${g_{\rm qv\max}}$ of gravitational acceleration that can be caused by a polarized quantum vacuum; the small size of this magnitude (${g_{\rm qv\max}} < 6\ \times {10^{ - 11}}\,\mathrm{ m\,s}{^{-2}}$) is the reason why in some cases (for instance within the Solar system) the quantum vacuum can be neglected. Advanced experiments at CERN and forthcoming astronomical observations will reveal if this is true or not, but we point to already existing empirical evidence that seemingly supports this fascinating possibility.

2019 ◽  
Vol 35 (08) ◽  
pp. 2030001
Author(s):  
Dragan Slavkov Hajdukovic

The aim of this brief review is twofold. First, we give an overview of the unprecedented experimental efforts to measure the gravitational acceleration of antimatter; with antihydrogen, in three competing experiments at CERN (AEGIS, ALPHA and GBAR), and with muonium and positronium in other laboratories in the world. Second, we present the 21st Century’s attempts to develop a new model of the Universe with the assumed gravitational repulsion between matter and antimatter; so far, three radically different and incompatible theoretical paradigms have been proposed. Two of these three models, Dirac–Milne Cosmology (that incorporates CPT violation) and the Lattice Universe (based on CPT symmetry), assume a symmetric Universe composed of equal amounts of matter and antimatter, with antimatter somehow “hidden” in cosmic voids; this hypothesis produced encouraging preliminary results. The heart of the third model is the hypothesis that quantum vacuum fluctuations are virtual gravitational dipoles; for the first time, this hypothesis makes possible and inevitable to include the quantum vacuum as a source of gravity. Standard Model matter is considered as the only content of the Universe, while phenomena usually attributed to dark matter and dark energy are explained as the local and global effects of the gravitational polarization of the quantum vacuum by the immersed baryonic matter. An additional feature is that we might live in a cyclic Universe alternatively dominated by matter and antimatter. In about three years, we will know if there is gravitational repulsion between matter and antimatter; a discovery that can forever change our understanding of the Universe.


2002 ◽  
Vol 17 (06n07) ◽  
pp. 804-807 ◽  
Author(s):  
E. CALLONI ◽  
L. DI FIORE ◽  
G. ESPOSITO ◽  
L. MILANO ◽  
L. ROSA

Vacuum fluctuations produce a force acting on a rigid Casimir cavity in a weak gravitational field. Such a force is here evaluated and is found to have opposite direction with respect to the gravitational acceleration; the order of magnitude for a multi-layer cavity configuration is analyzed and experimental detection is discussed, bearing in mind the current technological resources.


Author(s):  
Gabriel R. Bengochea ◽  
Gabriel León ◽  
Elias Okon ◽  
Daniel Sudarsky

AbstractRecently it has been argued that a correct reading of the quantum fluctuations of the vacuum could lead to a solution to the cosmological constant problem. In this work we critically examine such a proposal, finding it questionable due to conceptual and self-consistency problems, as well as issues with the actual calculations. We conclude that the proposal is inadequate as a solution to the cosmological constant problem.


2017 ◽  
Vol 95 (1) ◽  
Author(s):  
V. A. De Lorenci ◽  
L. H. Ford

2018 ◽  
Vol 48 (6) ◽  
pp. 645-651
Author(s):  
V. B. Bezerra ◽  
M. S. Cunha ◽  
C. R. Muniz ◽  
M. O. Tahim

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Yilin Chen ◽  
Jin Wang

We investigate the quantum vacuum and find that the fluctuations can lead to the inhomogeneous quantum vacuum. We find that the vacuum fluctuations can significantly influence the cosmological inhomogeneity, which is different from what was previously expected. By introducing the modified Green’s function, we reach a new inflationary scenario which can explain why the Universe is still expanding without slowing down. We also calculate the tunneling amplitude of the Universe based on the inhomogeneous vacuum. We find that the inhomogeneity can lead to the penetration of the Universe over the potential barrier faster than previously thought.


Author(s):  
Serge Reynaud ◽  
Astrid Lambrecht ◽  
Cyriaque Genet ◽  
Marc-Thierry Jaekel

2020 ◽  
Vol 29 (11) ◽  
pp. 2041003
Author(s):  
Robert M. Wald

I describe the work done in collaboration with A. Belenchia, F. Giacomini, E. Castro-Ruiz, C. Bruckner and M. Aspelmeyer that analyzes a gedanken experiment involving a massive body that is put into a quantum superposition. Remarkably, even for a nonrelativistic body, both vacuum fluctuations of the gravitational field and the quantization of gravitational radiation are essential in order to avoid inconsistencies. In addition, it is essential that the quantum body be viewed as entangled with its own Newtonian-like gravitational field in order to understand how the body may become entangled with other massive bodies via gravitational interactions.


Sign in / Sign up

Export Citation Format

Share Document