scholarly journals Erratum to: A Bayesian mutation-selection framework for detecting site-specific adaptive evolution in protein-coding genes

Author(s):  
Nicolas Rodrigue ◽  
Thibault Latrille ◽  
Nicolas Lartillot
Author(s):  
Nicolas Rodrigue ◽  
Thibault Latrille ◽  
Nicolas Lartillot

Abstract In recent years, codon substitution models based on the mutation–selection principle have been extended for the purpose of detecting signatures of adaptive evolution in protein-coding genes. However, the approaches used to date have either focused on detecting global signals of adaptive regimes—across the entire gene—or on contexts where experimentally derived, site-specific amino acid fitness profiles are available. Here, we present a Bayesian site-heterogeneous mutation–selection framework for site-specific detection of adaptive substitution regimes given a protein-coding DNA alignment. We offer implementations, briefly present simulation results, and apply the approach on a few real data sets. Our analyses suggest that the new approach shows greater sensitivity than traditional methods. However, more study is required to assess the impact of potential model violations on the method, and gain a greater empirical sense its behavior on a broader range of real data sets. We propose an outline of such a research program.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8450 ◽  
Author(s):  
Sunan Huang ◽  
Xuejun Ge ◽  
Asunción Cano ◽  
Betty Gaby Millán Salazar ◽  
Yunfei Deng

The genus Dicliptera (Justicieae, Acanthaceae) consists of approximately 150 species distributed throughout the tropical and subtropical regions of the world. Newly obtained chloroplast genomes (cp genomes) are reported for five species of Dilciptera (D. acuminata, D. peruviana, D. montana, D. ruiziana and D. mucronata) in this study. These cp genomes have circular structures of 150,689–150,811 bp and exhibit quadripartite organizations made up of a large single copy region (LSC, 82,796–82,919 bp), a small single copy region (SSC, 17,084–17,092 bp), and a pair of inverted repeat regions (IRs, 25,401–25,408 bp). Guanine-Cytosine (GC) content makes up 37.9%–38.0% of the total content. The complete cp genomes contain 114 unique genes, including 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analyses of nucleotide variability (Pi) reveal the five most variable regions (trnY-GUA-trnE-UUC, trnG-GCC, psbZ-trnG-GCC, petN-psbM, and rps4-trnL-UUA), which may be used as molecular markers in future taxonomic identification and phylogenetic analyses of Dicliptera. A total of 55-58 simple sequence repeats (SSRs) and 229 long repeats were identified in the cp genomes of the five Dicliptera species. Phylogenetic analysis identified a close relationship between D. ruiziana and D. montana, followed by D. acuminata, D. peruviana, and D. mucronata. Evolutionary analysis of orthologous protein-coding genes within the family Acanthaceae revealed only one gene, ycf15, to be under positive selection, which may contribute to future studies of its adaptive evolution. The completed genomes are useful for future research on species identification, phylogenetic relationships, and the adaptive evolution of the Dicliptera species.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 464 ◽  
Author(s):  
Leos G. Kral ◽  
Sara Watson

Background: Mitochondrial DNA of vertebrates contains genes for 13 proteins involved in oxidative phosphorylation. Some of these genes have been shown to undergo adaptive evolution in a variety of species. This study examines all mitochondrial protein coding genes in 11 darter species to determine if any of these genes show evidence of positive selection. Methods: The mitogenome from four darter was sequenced and annotated. Mitogenome sequences for another seven species were obtained from GenBank. Alignments of each of the protein coding genes were subject to codon-based identification of positive selection by Selecton, MEME and FEL. Results: Evidence of positive selection was obtained for six of the genes by at least one of the methods. CYTB was identified as having evolved under positive selection by all three methods at the same codon location. Conclusions: Given the evidence for positive selection of mitochondrial protein coding genes in darters, a more extensive analysis of mitochondrial gene evolution in all the extant darter species is warranted.


2017 ◽  
Author(s):  
Sarah K. Hilton ◽  
Michael B Doud ◽  
Jesse D Bloom

AbstractBackgroundThe evolution of protein-coding genes can be quantitatively modeled using phylogenetic methods. Recently, it has been shown that high-throughput experimental measurements of mutational effects made via deep mutational scanning can inform site-specific phylogenetic substitution models of gene evolution. However, there is currently no software tailored for such analyses.ResultsWe describe software that efficiently performs phylogenetic analyses with substitution models informed by deep mutational scanning. This software, phydms, is ∼100-fold faster than existing programs that accommodate such substitution models. It can be used to compare the results of deep mutational scanning experiments to the selection on genes in nature. For instance, phydms enables rigorous comparison of how well different experiments on the same gene describe natural selection. It also enables the re-scaling of deep mutational scanning data to account for differences in the stringency of selection in the lab and nature. Finally, phydms can identify sites that are evolving differently in nature than expected from experiments in the lab.ConclusionsThe phydms software makes it easy to use phylogenetic substitution models informed by deep mutational scanning experiments. As data from such experiments becomes increasingly widespread, phydms will facilitate quantitative comparison of the experimental results to the actual selection pressures shaping evolution in nature.


2019 ◽  
Author(s):  
Mei Yang ◽  
Lin Gong ◽  
Jixing Sui ◽  
Xinzheng Li

AbstractThe deep sea is one of the most extreme environments on earth, with low oxygen, high hydrostatic pressure and high levels of toxins. Species of the family Vesicomyidae are among the dominant chemosymbiotic bivalves found in this harsh habitat. Mitochondria play a vital role in oxygen usage and energy metabolism; thus, they may be under selection during the adaptive evolution of deep-sea vesicomyids. In this study, the mitochondrial genome (mitogenome) of the vesicomyid bivalve Calyptogena marissinica was sequenced with Illumina sequencing. The mitogenome of C. marissinica is 17,374 bp in length and contains 13 protein-coding genes, 2 ribosomal RNA genes (rrnS and rrnL) and 22 transfer RNA genes. All of these genes are encoded on the heavy strand. Some special elements, such as tandem repeat sequences, “G(A)nT” motifs and AT-rich sequences, were observed in the control region of the C. marissinica mitogenome, which is involved in the regulation of replication and transcription of the mitogenome and may be helpful in adjusting the mitochondrial energy metabolism of organisms to adapt to the deep-sea environment. The gene arrangement of protein-coding genes was identical to that of other sequenced vesicomyids. Phylogenetic analyses clustered C. marissinica with previously reported vesicomyid bivalves with high support values. Positive selection analysis revealed evidence of adaptive change in the mitogenome of Vesicomyidae. Ten potentially important adaptive residues were identified, which were located in cox1, cox3, cob, nad2, nad4 and nad5. Overall, this study sheds light on the mitogenomic adaptation of vesicomyid bivalves that inhabit the deep-sea environment.


F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1845 ◽  
Author(s):  
Dariya K. Sydykova ◽  
Benjamin R. Jack ◽  
Stephanie J. Spielman ◽  
Claus O. Wilke

We describe how to measure site-specific rates of evolution in protein-coding genes and how to correlate these rates with structural features of the expressed protein, such as relative solvent accessibility, secondary structure, or weighted contact number. We present two alternative approaches to rate calculations: One based on relative amino-acid rates, and the other based on site-specific codon rates measured as dN/dS. We additionally provide a code repository containing scripts to facilitate the specific analysis protocols we recommend.


Author(s):  
Dipanjana Dhar ◽  
Debayan Dey ◽  
Soumalee Basu ◽  
Helena Fortunato

AbstractMitochondria are the centre of energy metabolism in eukaryotic cells and its genes are thus key to the evolution of molecular mechanisms that metabolize cellular energy. Intertidal zone is one of the most stressful environments with extreme shifts in temperature, salinity, pH and oxygen concentrations. Marine molluscs, particularly chitons belong to the ecologically dominant organisms in this extreme environment, symbolizing an ideal model to understand mitochondrial stress adaptation. Here, we used concatenated mitochondrial genetic components separately from seven chitons of the intertidal zone to reconstruct phylogenetic relationships among these species. We performed selection analyses considering sites and branches of individual protein-coding genes to identify potentially adaptive residues and localize them in the protein structures of mt subunits. Our results exhibited significant amino acid changes in sites under diversifying selection of all the protein-coding genes, indicative of the adaptive evolution of mitochondrial genome in chitons. Furthermore, we obtained sites in the transmembrane helices lining the proton translocation channel as well as in surrounding loop regions, providing implication towards functional modification of the OXPHOS proteins essential for survival in dynamic environment of the intertidal zone.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1845 ◽  
Author(s):  
Dariya K. Sydykova ◽  
Benjamin R. Jack ◽  
Stephanie J. Spielman ◽  
Claus O. Wilke

We describe how to measure site-specific rates of evolution in protein-coding genes and how to correlate these rates with structural features of the expressed protein, such as relative solvent accessibility, secondary structure, or weighted contact number. We present two alternative approaches to rate calculations, one based on relative amino-acid rates and the other based on site-specific codon rates measured as dN/dS. In addition to describing the specific analysis protocols we recommend, we also provide a code repository containing scripts to facilitate these kinds of analyses.


Sign in / Sign up

Export Citation Format

Share Document