scholarly journals OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers

2020 ◽  
Vol 49 (D1) ◽  
pp. D1289-D1301 ◽  
Author(s):  
Tao Wang ◽  
Shasha Ruan ◽  
Xiaolu Zhao ◽  
Xiaohui Shi ◽  
Huajing Teng ◽  
...  

Abstract The prevalence of neutral mutations in cancer cell population impedes the distinguishing of cancer-causing driver mutations from passenger mutations. To systematically prioritize the oncogenic ability of somatic mutations and cancer genes, we constructed a useful platform, OncoVar (https://oncovar.org/), which employed published bioinformatics algorithms and incorporated known driver events to identify driver mutations and driver genes. We identified 20 162 cancer driver mutations, 814 driver genes and 2360 pathogenic pathways with high-confidence by reanalyzing 10 769 exomes from 33 cancer types in The Cancer Genome Atlas (TCGA) and 1942 genomes from 18 cancer types in International Cancer Genome Consortium (ICGC). OncoVar provides four points of view, ‘Mutation’, ‘Gene’, ‘Pathway’ and ‘Cancer’, to help researchers to visualize the relationships between cancers and driver variants. Importantly, identification of actionable driver alterations provides promising druggable targets and repurposing opportunities of combinational therapies. OncoVar provides a user-friendly interface for browsing, searching and downloading somatic driver mutations, driver genes and pathogenic pathways in various cancer types. This platform will facilitate the identification of cancer drivers across individual cancer cohorts and helps to rank mutations or genes for better decision-making among clinical oncologists, cancer researchers and the broad scientific community interested in cancer precision medicine.

2018 ◽  
Author(s):  
Paul Ashford ◽  
Camilla S.M. Pang ◽  
Aurelio A. Moya-García ◽  
Tolulope Adeyelu ◽  
Christine A. Orengo

Tumour sequencing identifies highly recurrent point mutations in cancer driver genes, but rare functional mutations are hard to distinguish from large numbers of passengers. We developed a novel computational platform applying a multi-modal approach to filter out passengers and more robustly identify putative driver genes. The primary filter identifies enrichment of cancer mutations in CATH functional families (CATH-FunFams) – structurally and functionally coherent sets of evolutionary related domains. Using structural representatives from CATH-FunFams, we subsequently seek enrichment of mutations in 3D and show that these mutation clusters have a very significant tendency to lie close to known functional sites or conserved sites predicted using CATH-FunFams. Our third filter identifies enrichment of putative driver genes in functionally coherent protein network modules confirmed by literature analysis to be cancer associated.Our approach is complementary to other domain enrichment approaches exploiting Pfam families, but benefits from more functionally coherent groupings of domains. Using a set of mutations from 22 cancers we detect 151 putative cancer drivers, of which 79 are not listed in cancer resources and include recently validated cancer genes EPHA7, DCC netrin-1 receptor and zinc-finger protein ZNF479.


2016 ◽  
Vol 14 (06) ◽  
pp. 1650031 ◽  
Author(s):  
Ana B. Pavel ◽  
Cristian I. Vasile

Cancer is a complex and heterogeneous genetic disease. Different mutations and dysregulated molecular mechanisms alter the pathways that lead to cell proliferation. In this paper, we explore a method which classifies genes into oncogenes (ONGs) and tumor suppressors. We optimize this method to identify specific (ONGs) and tumor suppressors for breast cancer, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and colon adenocarcinoma (COAD), using data from the cancer genome atlas (TCGA). A set of genes were previously classified as ONGs and tumor suppressors across multiple cancer types (Science 2013). Each gene was assigned an ONG score and a tumor suppressor score based on the frequency of its driver mutations across all variants from the catalogue of somatic mutations in cancer (COSMIC). We evaluate and optimize this approach within different cancer types from TCGA. We are able to determine known driver genes for each of the four cancer types. After establishing the baseline parameters for each cancer type, we identify new driver genes for each cancer type, and the molecular pathways that are highly affected by them. Our methodology is general and can be applied to different cancer subtypes to identify specific driver genes and improve personalized therapy.


2021 ◽  
Author(s):  
Maxwell A Sherman ◽  
Adam Yaari ◽  
Oliver Priebe ◽  
Felix Dietlein ◽  
Po-Ru Loh ◽  
...  

An ongoing challenge to better understand and treat cancer is to distinguish neutral mutations, which do not affect tumor fitness, from those that provide a proliferative advantage. However, the variability of mutation rates has limited our ability to model patterns of neutral mutations and therefore identify cancer driver mutations. Here, we predict cancer-specific mutation rates genome-wide by leveraging deep neural networks to learn mutation rates within kilobase-scale regions and then refining these estimates to test for evidence of selection on combinations of mutations by comparing observed to expected mutation counts. We mapped mutation rates for 37 cancer types and used these maps to identify new putative drivers in understudied regions of the genome including cryptic alternative-splice sites, 5 prime untranslated regions and infrequently mutated genes. These results, available for exploration via web interface, indicate the potential for high-resolution neutral mutation models to empower further driver discovery as cancer sequencing cohorts grow.


2020 ◽  
Author(s):  
Ferran Muiños ◽  
Francisco Martinez-Jimenez ◽  
Oriol Pich ◽  
Abel Gonzalez-Perez ◽  
Nuria Lopez-Bigas

SummaryExtensive bioinformatics analysis of datasets of tumor somatic mutations data have revealed the presence of some 500-600 cancer driver genes. The identification of all potential driver mutations affecting cancer genes is essential to implement precision cancer medicine and to understand the interplay of mutation probability and selection in tumor development. Here, we present an in silico saturation mutagenesis approach to identify all driver mutations in 568 cancer genes across 66 tumor types. For most cancer genes the mutation probability across tissues --underpinned by active mutational processes-- influences which driver variants have been observed, although this differs significantly between tumor suppressor and oncogenes. The role of selection is apparent in some of the latter, the observed and unobserved driver mutations of which are equally likely to occur. The number of potential driver mutations in a cancer gene roughly determines how many mutations are available for detection across newly sequenced tumors.


2018 ◽  
Author(s):  
Olivier Collier ◽  
Véronique Stoven ◽  
Jean-Philippe Vert

AbstractCancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the acquisition of important functions in tumors, providing a selective growth advantage, allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to identify these driver genes, both for the fundamental understanding of cancer and to help finding new therapeutic targets. Although the most frequently mutated driver genes have been identified, it is believed that many more remain to be discovered, particularly for driver genes specific to some cancer types.In this paper we propose a new computational method called LOTUS to predict new driver genes. LOTUS is a machine-learning based approach which allows to integrate various types of data in a versatile manner, including informations about gene mutations and protein-protein interactions. In addition, LOTUS can predict cancer driver genes in a pan-cancer setting as well as for specific cancer types, using a multitask learning strategy to share information across cancer types.We empirically show that LOTUS outperforms three other state-of-the-art driver gene prediction methods, both in terms of intrinsic consistency and prediction accuracy, and provide predictions of new cancer genes across many cancer types.Author summaryCancer development is driven by mutations and dysfunction of important, so-called cancer driver genes, that could be targeted by targeted therapies. While a number of such cancer genes have already been identified, it is believed that many more remain to be discovered. To help prioritize experimental investigations of candidate genes, several computational methods have been proposed to rank promising candidates based on their mutations in large cohorts of cancer cases, or on their interactions with known driver genes in biological networks. We propose LOTUS, a new computational approach to identify genes with high oncogenic potential. LOTUS implements a machine learning approach to learn an oncogenic potential score from known driver genes, and brings two novelties compared to existing methods. First, it allows to easily combine heterogeneous informations into the scoring function, which we illustrate by learning a scoring function from both known mutations in large cancer cohorts and interactions in biological networks. Second, using a multitask learning strategy, it can predict different driver genes for different cancer types, while sharing information between them to improve the prediction for every type. We provide experimental results showing that LOTUS significantly outperforms several state-of-the-art cancer gene prediction softwares.


2019 ◽  
Author(s):  
Rafsan Ahmed ◽  
Ilyes Baali ◽  
Cesim Erten ◽  
Evis Hoxha ◽  
Hilal Kazan

AbstractMotivationGenomic analyses from large cancer cohorts have revealed the mutational heterogeneity problem which hinders the identification of driver genes based only on mutation profiles. One way to tackle this problem is to incorporate the fact that genes act together in functional modules. The connectivity knowledge present in existing protein-protein interaction networks together with mutation frequencies of genes and the mutual exclusivity of cancer mutations can be utilized to increase the accuracy of identifying cancer driver modules.ResultsWe present a novel edge-weighted random walk-based approach that incorporates connectivity information in the form of protein-protein interactions, mutual exclusion, and coverage to identify cancer driver modules. MEXCOWalk outperforms several state-of-the-art computational methods on TCGA pan-cancer data in terms of recovering known cancer genes, providing modules that are capable of classifying normal and tumor samples, and that are enriched for mutations in specific cancer types. Furthermore, the risk scores determined with output modules can stratify patients into low-risk and high-risk groups in multiple cancer types. MEXCOwalk identifies modules containing both well-known cancer genes and putative cancer genes that are rarely mutated in the pan-cancer data. The data, the source code, and useful scripts are available at:https://github.com/abu-compbio/[email protected]


2015 ◽  
Author(s):  
Xing Hua ◽  
Paula L. Hyland ◽  
Jing Huang ◽  
Bin Zhu ◽  
Neil E. Caporaso ◽  
...  

The central challenge in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when patients carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, pathway-guided searches or for expanding established small MEGS. We applied our method to the whole exome sequencing data for fourteen cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a novel MEGS with five genes (FLT3, IDH2, NRAS, KIT and TP53) and a MEGS (NPM1, TP53 and RUX1) whose mutation status was strongly associated with survival (P=6.7×10-4). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23 and TBL1XR1), providing support for their role as cancer drivers. Keywords: Mutual exclusivity, oncogenic pathways, driver genes, tumor sequencing


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kasit Chatsirisupachai ◽  
Tom Lesluyes ◽  
Luminita Paraoan ◽  
Peter Van Loo ◽  
João Pedro de Magalhães

AbstractAge is the most important risk factor for cancer, as cancer incidence and mortality increase with age. However, how molecular alterations in tumours differ among patients of different age remains largely unexplored. Here, using data from The Cancer Genome Atlas, we comprehensively characterise genomic, transcriptomic and epigenetic alterations in relation to patients’ age across cancer types. We show that tumours from older patients present an overall increase in genomic instability, somatic copy-number alterations (SCNAs) and somatic mutations. Age-associated SCNAs and mutations are identified in several cancer-driver genes across different cancer types. The largest age-related genomic differences are found in gliomas and endometrial cancer. We identify age-related global transcriptomic changes and demonstrate that these genes are in part regulated by age-associated DNA methylation changes. This study provides a comprehensive, multi-omics view of age-associated alterations in cancer and underscores age as an important factor to consider in cancer research and clinical practice.


Author(s):  
Wenyi Zhao ◽  
Jingwen Yang ◽  
Jingcheng Wu ◽  
Guoxing Cai ◽  
Yao Zhang ◽  
...  

Abstract Current cancer genomics databases have accumulated millions of somatic mutations that remain to be further explored. Due to the over-excess mutations unrelated to cancer, the great challenge is to identify somatic mutations that are cancer-driven. Under the notion that carcinogenesis is a form of somatic-cell evolution, we developed a two-component mixture model: while the ground component corresponds to passenger mutations, the rapidly evolving component corresponds to driver mutations. Then, we implemented an empirical Bayesian procedure to calculate the posterior probability of a site being cancer-driven. Based on these, we developed a software CanDriS (Cancer Driver Sites) to profile the potential cancer-driving sites for thousands of tumor samples from the Cancer Genome Atlas and International Cancer Genome Consortium across tumor types and pan-cancer level. As a result, we identified that approximately 1% of the sites have posterior probabilities larger than 0.90 and listed potential cancer-wide and cancer-specific driver mutations. By comprehensively profiling all potential cancer-driving sites, CanDriS greatly enhances our ability to refine our knowledge of the genetic basis of cancer and might guide clinical medication in the upcoming era of precision medicine. The results were displayed in a database CandrisDB (http://biopharm.zju.edu.cn/candrisdb/).


2018 ◽  
Author(s):  
Collin Tokheim ◽  
Rachel Karchin

SummaryLarge-scale cancer sequencing studies of patient cohorts have statistically implicated many genes driving cancer growth and progression, and their identification has yielded substantial translational impact. However, a remaining challenge is to increase the resolution of driver prediction from the gene level to the mutation level, because mutation-level predictions are more closely aligned with the goal of precision cancer medicine. Here we present CHASMplus, a computational method, that is uniquely capable of identifying driver missense mutations, including those specific to a cancer type, as evidenced by significantly superior performance on diverse benchmarks. Applied to 8,657 tumor samples across 32 cancer types in The Cancer Genome Atlas, CHASMplus identifies over 4,000 unique driver missense mutations in 240 genes, supporting a prominent role for rare driver mutations. We show which TCGA cancer types are likely to yield discovery of new driver missense mutations by additional sequencing, which has important implications for public policy.SignificanceMissense mutations are the most frequent mutation type in cancers and the most difficult to interpret. While many computational methods have been developed to predict whether genes are cancer drivers or whether missense mutations are generally deleterious or pathogenic, there has not previously been a method to score the oncogenic impact of a missense mutation specifically by cancer type, limiting adoption of computational missense mutation predictors in the clinic. Cancer patients are routinely sequenced with targeted panels of cancer driver genes, but such genes contain a mixture of driver and passenger missense mutations which differ by cancer type. A patient’s therapeutic response to drugs and optimal assignment to a clinical trial depends on both the specific mutation in the gene of interest and cancer type. We present a new machine learning method honed for each TCGA cancer type, and a resource for fast lookup of the cancer-specific driver propensity of every possible missense mutation in the human exome.


Sign in / Sign up

Export Citation Format

Share Document