cancer cell population
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 964
Author(s):  
Martin Vokurka ◽  
Lukáš Lacina ◽  
Jan Brábek ◽  
Michal Kolář ◽  
Yi Zhen Ng ◽  
...  

Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kenneth H. Gouin ◽  
Nathan Ing ◽  
Jasmine T. Plummer ◽  
Charles J. Rosser ◽  
Bassem Ben Cheikh ◽  
...  

AbstractNeoadjuvant chemotherapy (NAC) prior to surgery and immune checkpoint therapy (ICT) have revolutionized bladder cancer management. However, stratification of patients that would benefit most from these modalities remains a major clinical challenge. Here, we combine single nuclei RNA sequencing with spatial transcriptomics and single-cell resolution spatial proteomic analysis of human bladder cancer to identify an epithelial subpopulation with therapeutic response prediction ability. These cells express Cadherin 12 (CDH12, N-Cadherin 2), catenins, and other epithelial markers. CDH12-enriched tumors define patients with poor outcome following surgery with or without NAC. In contrast, CDH12-enriched tumors exhibit superior response to ICT. In all settings, patient stratification by tumor CDH12 enrichment offers better prediction of outcome than currently established bladder cancer subtypes. Molecularly, the CDH12 population resembles an undifferentiated state with inherently aggressive biology including chemoresistance, likely mediated through progenitor-like gene expression and fibroblast activation. CDH12-enriched cells express PD-L1 and PD-L2 and co-localize with exhausted T-cells, possibly mediated through CD49a (ITGA1), providing one explanation for ICT efficacy in these tumors. Altogether, this study describes a cancer cell population with an intriguing diametric response to major bladder cancer therapeutics. Importantly, it also provides a compelling framework for designing biomarker-guided clinical trials.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sulasri Suddin ◽  
Fajar Adi-Kusumo ◽  
Lina Aryati ◽  
Gunardi

Immunotherapy is one of the future treatments applicable in most cases of cancer including malignant cancer. Malignant cancer usually prevents some genes, e.g., p53 and pRb, from controlling the activation of the cell division and the cell apoptosis. In this paper, we consider the interactions among the cancer cell population, the effector cell population that is a part of the immune system, and cytokines that can be used to stimulate the effector cells called the IL-2 compounds. These interactions depend on both time and spatial position of the cells in the tissue. Mathematically, the spatial movement of the cells is represented by the diffusion terms. We provide an analytical study for the constant equilibria of the reaction-diffusion system describing the above interactions, which show the initial behaviour of the tissue, and we conduct numerical simulation that shows the dynamics along the tissue that represent the immunotherapy effects. In this case, we also consider the steady-state conditions of the system that show the long-time behaviour of these interactions.


2021 ◽  
Vol 17 (5) ◽  
pp. e1008765
Author(s):  
Marco António Dias Louro ◽  
Mónica Bettencourt-Dias ◽  
Claudia Bank

The presence of extra centrioles, termed centrosome amplification, is a hallmark of cancer. The distribution of centriole numbers within a cancer cell population appears to be at an equilibrium maintained by centriole overproduction and selection, reminiscent of mutation-selection balance. It is unknown to date if the interaction between centriole overproduction and selection can quantitatively explain the intra- and inter-population heterogeneity in centriole numbers. Here, we define mutation-selection-like models and employ a model selection approach to infer patterns of centriole overproduction and selection in a diverse panel of human cell lines. Surprisingly, we infer strong and uniform selection against any number of extra centrioles in most cell lines. Finally we assess the accuracy and precision of our inference method and find that it increases non-linearly as a function of the number of sampled cells. We discuss the biological implications of our results and how our methodology can inform future experiments.


2021 ◽  
Author(s):  
Leiv Rønneberg ◽  
Andrea Cremaschi ◽  
Robert Hanes ◽  
Jorrit Enserink ◽  
Manuela Zucknick

The effect of cancer therapies is often tested pre-clinically via in-vitro experiments, where the post-treatment viability of the cancer cell population is measured through assays estimating the number of viable cells. In this way, large libraries of compounds can be tested, comparing the efficacy of each treatment. Drug interaction studies focus on the quantification of the additional effect encountered when two drugs are combined, as opposed to using the treatments separately. In the bayesynergy R package, we implement a probabilistic approach for the description of the drug combination experiment, where the observed dose response curve is modelled as a sum of the expected response under a zero-interaction model and an additional interaction effect (synergistic or antagonistic). The interaction is modelled in a flexible manner, using a Gaussian process formulation. Since the proposed approach is based on a statistical model, it allows the natural inclusion of replicates, handles missing data and uneven concentration grids, and provides uncertainty quantification around the results. The model is implemented in the Stan programming language providing a computationally efficient sampler, a fast approximation of the posterior through variational inference, and features parallel processing for working with large drug combination screens.


2021 ◽  
Vol 2 (1) ◽  
pp. 32-54
Author(s):  
Thomas Carraro ◽  
Sven E. Wetterauer ◽  
Ana Victoria Ponce Bobadilla ◽  
Dumitru Trucu

The quest for a deeper understanding of the cancer growth and spread process focuses on the naturally multiscale nature of cancer invasion, which requires an appropriate multiscale modeling and analysis approach. The cross-talk between the dynamics of the cancer cell population on the tissue scale (macroscale) and the proteolytic molecular processes along the tumor border on the cell scale (microscale) plays a particularly important role within the invasion processes, leading to dramatic changes in tumor morphology and influencing the overall pattern of cancer spread. Building on the multiscale moving boundary framework proposed in Trucu et al. (Multiscale Model. Simul 11(1): 309-335), in this work we propose a new  formulation of this process involving a novel derivation of the macro scale boundary movement law based on micro-dynamics, involving a transport equation combined with the level-set method. This is explored numerically in a novel finite element macro-micro framework based on cut-cells.


2021 ◽  
Author(s):  
Prashant Karki ◽  
Vahideh Angardi ◽  
Juan C. Mier ◽  
Mehmet A. Orman

ABSTRACTPersister cells are defined as the small fraction of quiescent cells in a bulk cancer cell population that can tolerate unusually high levels of drugs. Persistence is a transient state that poses an important health concern in cancer therapy. The mechanisms associated with persister phenotypes are highly diverse and complex, and many aspects of persister cell physiology remain to be explored. We applied a melanoma cell line and panel of chemotherapeutic agents to show that melanoma persister cells are not necessarily preexisting dormant cells or stem cells; in fact, they may be induced by cancer chemotherapeutics. Our metabolomics analysis and phenotype microarray assays further demonstrated that the levels of Krebs cycle molecules are significantly lower in the melanoma persister subpopulation than in the untreated bulk cell population due to increased utilization rates in persisters. Our data indicate that this observed metabolic remodeling is transient, as the consumption rates of Krebs cycle metabolites are significantly reduced in the progenies of persisters. Given that the mitochondrial electron transport chain (ETC) is more active in the persister subpopulation than in the bulk cancer cell population, we also verified that targeting ETC activity can reduce melanoma persistence. The reported metabolic remodeling feature seems to be a conserved characteristic of melanoma persistence, as it has been observed in various melanoma persister subpopulations derived from a diverse range of chemotherapeutics. Elucidating a global metabolic mechanism that contributes to persister survival and reversible switching will ultimately foster the development of novel cancer therapeutic strategies.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008702
Author(s):  
Michael Raatz ◽  
Saumil Shah ◽  
Guranda Chitadze ◽  
Monika Brüggemann ◽  
Arne Traulsen

Intratumour heterogeneity is increasingly recognized as a frequent problem for cancer treatment as it allows for the evolution of resistance against treatment. While cancer genotyping becomes more and more established and allows to determine the genetic heterogeneity, less is known about the phenotypic heterogeneity among cancer cells. We investigate how phenotypic differences can impact the efficiency of therapy options that select on this diversity, compared to therapy options that are independent of the phenotype. We employ the ecological concept of trait distributions and characterize the cancer cell population as a collection of subpopulations that differ in their growth rate. We show in a deterministic model that growth rate-dependent treatment types alter the trait distribution of the cell population, resulting in a delayed relapse compared to a growth rate-independent treatment. Whether the cancer cell population goes extinct or relapse occurs is determined by stochastic dynamics, which we investigate using a stochastic model. Again, we find that relapse is delayed for the growth rate-dependent treatment type, albeit an increased relapse probability, suggesting that slowly growing subpopulations are shielded from extinction. Sequential application of growth rate-dependent and growth rate-independent treatment types can largely increase treatment efficiency and delay relapse. Interestingly, even longer intervals between decisions to change the treatment type may achieve close-to-optimal efficiencies and relapse times. Monitoring patients at regular check-ups may thus provide the temporally resolved guidance to tailor treatments to the changing cancer cell trait distribution and allow clinicians to cope with this dynamic heterogeneity.


Author(s):  
Rohan Chippalkatti ◽  
Daniel Abankwa

Cancer stem cells (CSC) may be the most relevant and elusive cancer cell population, as they have the exquisite ability to seed new tumors. It is plausible, that highly mutated cancer genes, such as KRAS, are functionally associated with processes contributing to the emergence of stemness traits. In this review, we will summarize the evidence for a stemness driving activity of oncogenic Ras. This activity appears to differ by Ras isoform, with the highly mutated KRAS having a particularly profound impact. Next to established stemness pathways such as Wnt and Hedgehog (Hh), the precise, cell cycle dependent orchestration of the MAPK-pathway appears to relay Ras activation in this context. We will examine how non-canonical activities of K-Ras4B (hereafter K-Ras) could be enabled by its trafficking chaperones calmodulin and PDE6D/PDEδ. Both dynamically localize to the cellular machinery that is intimately linked to cell fate decisions, such as the primary cilium and the centrosome. Thus, it can be speculated that oncogenic K-Ras disrupts fundamental polarized signaling and asymmetric apportioning processes that are necessary during cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document