scholarly journals Identifying cancer type specific oncogenes and tumor suppressors using limited size data

2016 ◽  
Vol 14 (06) ◽  
pp. 1650031 ◽  
Author(s):  
Ana B. Pavel ◽  
Cristian I. Vasile

Cancer is a complex and heterogeneous genetic disease. Different mutations and dysregulated molecular mechanisms alter the pathways that lead to cell proliferation. In this paper, we explore a method which classifies genes into oncogenes (ONGs) and tumor suppressors. We optimize this method to identify specific (ONGs) and tumor suppressors for breast cancer, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and colon adenocarcinoma (COAD), using data from the cancer genome atlas (TCGA). A set of genes were previously classified as ONGs and tumor suppressors across multiple cancer types (Science 2013). Each gene was assigned an ONG score and a tumor suppressor score based on the frequency of its driver mutations across all variants from the catalogue of somatic mutations in cancer (COSMIC). We evaluate and optimize this approach within different cancer types from TCGA. We are able to determine known driver genes for each of the four cancer types. After establishing the baseline parameters for each cancer type, we identify new driver genes for each cancer type, and the molecular pathways that are highly affected by them. Our methodology is general and can be applied to different cancer subtypes to identify specific driver genes and improve personalized therapy.

2022 ◽  
Author(s):  
Malvika Sudhakar ◽  
Raghunathan Rengaswamy ◽  
Karthik Raman

The progression of tumorigenesis starts with a few mutational and structural driver events in the cell. Various cohort-based computational tools exist to identify driver genes but require a large number of samples to produce reliable results. Many studies use different methods to identify driver mutations/genes from mutations that have no impact on tumour progression; however, a small fraction of patients show no mutational events in any known driver genes. Current unsupervised methods map somatic and expression data onto a network to identify the perturbation in the network. Our method is the first machine learning model to classify genes as tumour suppressor gene (TSG), oncogene (OG) or neutral, thus assigning the functional impact of the gene in the patient. In this study, we develop a multi-omic approach, PIVOT (Personalised Identification of driVer OGs and TSGs), to train on experimentally or computationally validated mutational and structural driver events. Given the lack of any gold standards for the identification of personalised driver genes, we label the data using four strategies and, based on classification metrics, show gene-based labelling strategies perform best. We build different models using SNV, RNA, and multi-omic features to be used based on the data available. Our models trained on multi-omic data improved predictions compared to mutation and expression data, achieving an accuracy >0.99 for BRCA, LUAD and COAD datasets. We show network and expression-based features contribute the most to PIVOT. Our predictions on BRCA, COAD and LUAD cancer types reveal commonly altered genes such as TP53, and PIK3CA, which are predicted drivers for multiple cancer types. Along with known driver genes, our models also identify new driver genes such as PRKCA, SOX9 and PSMD4. Our multi-omic model labels both CNV and mutations with a more considerable contribution by CNV alterations. While predicting labels for genes mutated in multiple samples, we also label rare driver events occurring in as few as one sample. We also identify genes with dual roles within the same cancer type. Overall, PIVOT labels personalised driver genes as TSGs and OGs and also identifies rare driver genes. PIVOT is available at https://github.com/RamanLab/PIVOT.


2018 ◽  
Author(s):  
Collin Tokheim ◽  
Rachel Karchin

SummaryLarge-scale cancer sequencing studies of patient cohorts have statistically implicated many genes driving cancer growth and progression, and their identification has yielded substantial translational impact. However, a remaining challenge is to increase the resolution of driver prediction from the gene level to the mutation level, because mutation-level predictions are more closely aligned with the goal of precision cancer medicine. Here we present CHASMplus, a computational method, that is uniquely capable of identifying driver missense mutations, including those specific to a cancer type, as evidenced by significantly superior performance on diverse benchmarks. Applied to 8,657 tumor samples across 32 cancer types in The Cancer Genome Atlas, CHASMplus identifies over 4,000 unique driver missense mutations in 240 genes, supporting a prominent role for rare driver mutations. We show which TCGA cancer types are likely to yield discovery of new driver missense mutations by additional sequencing, which has important implications for public policy.SignificanceMissense mutations are the most frequent mutation type in cancers and the most difficult to interpret. While many computational methods have been developed to predict whether genes are cancer drivers or whether missense mutations are generally deleterious or pathogenic, there has not previously been a method to score the oncogenic impact of a missense mutation specifically by cancer type, limiting adoption of computational missense mutation predictors in the clinic. Cancer patients are routinely sequenced with targeted panels of cancer driver genes, but such genes contain a mixture of driver and passenger missense mutations which differ by cancer type. A patient’s therapeutic response to drugs and optimal assignment to a clinical trial depends on both the specific mutation in the gene of interest and cancer type. We present a new machine learning method honed for each TCGA cancer type, and a resource for fast lookup of the cancer-specific driver propensity of every possible missense mutation in the human exome.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1289-D1301 ◽  
Author(s):  
Tao Wang ◽  
Shasha Ruan ◽  
Xiaolu Zhao ◽  
Xiaohui Shi ◽  
Huajing Teng ◽  
...  

Abstract The prevalence of neutral mutations in cancer cell population impedes the distinguishing of cancer-causing driver mutations from passenger mutations. To systematically prioritize the oncogenic ability of somatic mutations and cancer genes, we constructed a useful platform, OncoVar (https://oncovar.org/), which employed published bioinformatics algorithms and incorporated known driver events to identify driver mutations and driver genes. We identified 20 162 cancer driver mutations, 814 driver genes and 2360 pathogenic pathways with high-confidence by reanalyzing 10 769 exomes from 33 cancer types in The Cancer Genome Atlas (TCGA) and 1942 genomes from 18 cancer types in International Cancer Genome Consortium (ICGC). OncoVar provides four points of view, ‘Mutation’, ‘Gene’, ‘Pathway’ and ‘Cancer’, to help researchers to visualize the relationships between cancers and driver variants. Importantly, identification of actionable driver alterations provides promising druggable targets and repurposing opportunities of combinational therapies. OncoVar provides a user-friendly interface for browsing, searching and downloading somatic driver mutations, driver genes and pathogenic pathways in various cancer types. This platform will facilitate the identification of cancer drivers across individual cancer cohorts and helps to rank mutations or genes for better decision-making among clinical oncologists, cancer researchers and the broad scientific community interested in cancer precision medicine.


2017 ◽  
Author(s):  
Zhuyi Xue ◽  
René L Warren ◽  
Ewan A Gibb ◽  
Daniel MacMillan ◽  
Johnathan Wong ◽  
...  

AbstractAlternative polyadenylation (APA) of 3’ untranslated regions (3’ UTRs) has been implicated in cancer development. Earlier reports on APA in cancer primarily focused on 3’ UTR length modifications, and the conventional wisdom is that tumor cells preferentially express transcripts with shorter 3’ UTRs. Here, we analyzed the APA patterns of 114 genes, a select list of oncogenes and tumor suppressors, in 9,939 tumor and 729 normal tissue samples across 33 cancer types using RNA-Seq data from The Cancer Genome Atlas, and we found that the APA regulation machinery is much more complicated than what was previously thought. We report 77 cases (gene-cancer type pairs) of differential 3’ UTR cleavage patterns between normal and tumor tissues, involving 33 genes in 13 cancer types. For 15 genes, the tumor-specific cleavage patterns are recurrent across multiple cancer types. While the cleavage patterns in certain genes indicate apparent trends of 3’ UTR shortening in tumor samples, over half of the 77 cases imply 3’ UTR length change trends in cancer that are more complex than simple shortening or lengthening. This work extends the current understanding of APA regulation in cancer, and demonstrates how large volumes of RNA-seq data generated for characterizing cancer cohorts can be mined to investigate this process.


2020 ◽  
Author(s):  
Bo Gao ◽  
Michael Baudis

AbstractCopy number aberrations (CNA) are one of the most important classes of genomic mutations related to oncogenetic effects. In the past three decades, a vast amount of CNA data has been generated by molecular-cytogenetic and genome sequencing based methods. While this data has been instrumental in the identification of cancer-related genes and promoted research into the relation between CNA and histo-pathologically defined cancer types, the heterogeneity of source data and derived CNV profiles pose great challenges for data integration and comparative analysis. Furthermore, a majority of existing studies has been focused on the association of CNA to pre-selected “driver” genes with limited application to rare drivers and other genomic elements.In this study, we developed a bioinformatic pipeline to integrate a collection of 44,988 high-quality CNA profiles of high diversity. Using a hybrid model of neural networks and attention algorithm, we generated the CNA signatures of 31 cancer subtypes, depicting the uniqueness of their respective CNA landscapes. Finally, we constructed a multi-label classifier to identify the cancer type and the organ of origin from copy number profiling data. The investigation of the signatures suggested common patterns, not only of physiologically related cancer types but also of clinico-pathologically distant cancer types such as different cancers originating from the neural crest. Further experiments of classification models confirmed the effectiveness of the signatures in distinguishing different cancer types and demonstrated their potential in tumor classification.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 604 ◽  
Author(s):  
Wang ◽  
Wu ◽  
Ma

Prognosis modeling plays an important role in cancer studies. With the development of omics profiling, extensive research has been conducted to search for prognostic markers for various cancer types. However, many of the existing studies share a common limitation by only focusing on a single cancer type and suffering from a lack of sufficient information. With potential molecular similarity across cancer types, one cancer type may contain information useful for the analysis of other types. The integration of multiple cancer types may facilitate information borrowing so as to more comprehensively and more accurately describe prognosis. In this study, we conduct marginal and joint integrative analysis of multiple cancer types, effectively introducing integration in the discovery process. For accommodating high dimensionality and identifying relevant markers, we adopt the advanced penalization technique which has a solid statistical ground. Gene expression data on nine cancer types from The Cancer Genome Atlas (TCGA) are analyzed, leading to biologically sensible findings that are different from the alternatives. Overall, this study provides a novel venue for cancer prognosis modeling by integrating multiple cancer types.


2019 ◽  
Author(s):  
Pramod Chandrashekar ◽  
Navid Ahmadinejad ◽  
Junwen Wang ◽  
Aleksandar Sekulic ◽  
Jan B. Egan ◽  
...  

ABSTRACTFunctions of cancer driver genes depend on cellular contexts that vary substantially across tissues and organs. Distinguishing oncogenes (OGs) and tumor suppressor genes (TSGs) for each cancer type is critical to identifying clinically actionable targets. However, current resources for context-aware classifications of cancer drivers are limited. In this study, we show that the direction and magnitude of somatic selection of missense and truncating mutations of a gene are suggestive of its contextual activities. By integrating these features with ratiometric and conservation measures, we developed a computational method to categorize OGs and TSGs using exome sequencing data. This new method, named genes under selection in tumors (GUST) shows an overall accuracy of 0.94 when tested on manually curated benchmarks. Application of GUST to 10,172 tumor exomes of 33 cancer types identified 98 OGs and 179 TSGs, >70% of which promote tumorigenesis in only one cancer type. In broad-spectrum drivers shared across multiple cancer types, we found heterogeneous mutational hotspots modifying distinct functional domains, implicating the synchrony of convergent and divergent disease mechanisms. We further discovered two novel OGs and 28 novel TSGs with high confidence. The GUST program is available at https://github.com/liliulab/gust. A database with pre-computed classifications is available at https://liliulab.shinyapps.io/gust


2015 ◽  
Author(s):  
Xing Hua ◽  
Paula L. Hyland ◽  
Jing Huang ◽  
Bin Zhu ◽  
Neil E. Caporaso ◽  
...  

The central challenge in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when patients carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, pathway-guided searches or for expanding established small MEGS. We applied our method to the whole exome sequencing data for fourteen cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a novel MEGS with five genes (FLT3, IDH2, NRAS, KIT and TP53) and a MEGS (NPM1, TP53 and RUX1) whose mutation status was strongly associated with survival (P=6.7×10-4). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23 and TBL1XR1), providing support for their role as cancer drivers. Keywords: Mutual exclusivity, oncogenic pathways, driver genes, tumor sequencing


2022 ◽  
Vol 12 ◽  
Author(s):  
Yiran Zhou ◽  
Qinghua Cui ◽  
Yuan Zhou

tRNA-derived fragments (tRFs) constitute a novel class of small non-coding RNA cleaved from tRNAs. In recent years, researches have shown the regulatory roles of a few tRFs in cancers, illuminating a new direction for tRF-centric cancer researches. Nonetheless, more specific screening of tRFs related to oncogenesis pathways, cancer progression stages and cancer prognosis is continuously demanded to reveal the landscape of the cancer-associated tRFs. In this work, by combining the clinical information recorded in The Cancer Genome Atlas (TCGA) and the tRF expression profiles curated by MINTbase v2.0, we systematically screened 1,516 cancer-associated tRFs (ca-tRFs) across seven cancer types. The ca-tRF set collectively combined the differentially expressed tRFs between cancer samples and control samples, the tRFs significantly correlated with tumor stage and the tRFs significantly correlated with patient survival. By incorporating our previous tRF-target dataset, we found the ca-tRFs tend to target cancer-associated genes and onco-pathways like ATF6-mediated unfolded protein response, angiogenesis, cell cycle process regulation, focal adhesion, PI3K-Akt signaling pathway, cellular senescence and FoxO signaling pathway across multiple cancer types. And cell composition analysis implies that the expressions of ca-tRFs are more likely to be correlated with T-cell infiltration. We also found the ca-tRF expression pattern is informative to prognosis, suggesting plausible tRF-based cancer subtypes. Together, our systematic analysis demonstrates the potentially extensive involvements of tRFs in cancers, and provides a reasonable list of cancer-associated tRFs for further investigations.


2021 ◽  
Author(s):  
Banabithi Bose ◽  
Matthew Moravec ◽  
Serdar Bozdag

Abstract DNA copy number aberrated regions in cancer are known to harbor cancer driver genes and the short non-coding RNA molecules, i.e., microRNAs. In this study, we integrated the multi-omics datasets such as copy number aberration, DNA methylation, gene and microRNA expression to identify the signature microRNA-gene associations from frequently aberrated DNA regions across pan-cancer utilizing a LASSO-based regression approach. We studied 7,294 patient samples associated with eighteen different cancer types from The Cancer Genome Atlas (TCGA) database and identified several cancer-specific microRNA-gene interactions enriched in experimentally validated microRNA-target databases. We highlighted several oncogenic and tumor suppressor microRNAs and genes that were common in several cancer types. Our method substantially outperformed the five state-of-art methods in selecting significantly known microRNA-gene interactions in multiple cancer types. Several microRNAs and genes were found to be associated with tumor survival and progression. Selected target genes were found to be significantly enriched in cancer-related pathways, cancer Hallmark and Gene Ontology (GO) terms. Furthermore, subtype-specific potential gene signatures were discovered in multiple cancer types.


Sign in / Sign up

Export Citation Format

Share Document