scholarly journals Postnatal development- and age-related changes in DNA-methylation patterns in the human genome

2012 ◽  
Vol 40 (14) ◽  
pp. 6477-6494 ◽  
Author(s):  
Paraskevi Salpea ◽  
Valya R. Russanova ◽  
Tazuko H. Hirai ◽  
Thomae G. Sourlingas ◽  
Kalliope E. Sekeri-Pataryas ◽  
...  
2018 ◽  
Vol 9 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Leonidas Chouliaras ◽  
Roy Lardenoije ◽  
Gunter Kenis ◽  
Diego Mastroeni ◽  
Patrick R. Hof ◽  
...  

Abstract Brain aging has been associated with aberrant DNA methylation patterns, and changes in the levels of DNA methylation and associated markers have been observed in the brains of Alzheimer’s disease (AD) patients. DNA hydroxymethylation, however, has been sparsely investigated in aging and AD. We have previously reported robust decreases in 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in the hippocampus of AD patients compared to non-demented controls. In the present study, we investigated 3- and 9-month-old APPswe/PS1ΔE9 transgenic and wild-type mice for possible age-related alterations in 5-mC and 5-hmC levels in three hippocampal sub-regions using quantitative immunohistochemistry. While age-related increases in levels of both 5-mC and 5-hmC were found in wild-type mice, APPswe/PS1ΔE9 mice showed decreased levels of 5-mC at 9 months of age and no age-related changes in 5-hmC throughout the hippocampus. Altogether, these findings suggest that aberrant amyloid processing impact on the balance between DNA methylation and hydroxymethylation in the hippocampus during aging in mice.


Inflammation ◽  
2016 ◽  
Vol 39 (6) ◽  
pp. 1892-1903 ◽  
Author(s):  
Yu Xia ◽  
Jun Yang ◽  
Guobin Wang ◽  
Chengrong Li ◽  
Qiu Li

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2660-2660
Author(s):  
Ying Liang

The aging of hematopoietic stem cells (HSCs) contributes to the aging of blood system and perhaps the whole organism. The aging process is coordinately determined by both genetic and epigenetic factors, and demonstrates inter-individual variations. We used high-throughput sequencing methods to study the age-dependent changes of genome-wide DNA methylation and gene expression patterns in HSCs of C57BL/6 (B6) and DBA/2 mouse strains, which have shown natural variations in HSC aging process. We observed global age-associated decrease of DNA methylation in both strains, but D2 HSCs have a stronger loss of epigenetic control than B6 stem cells during aging. Majority age-related changes of DNA methylation occur from young to mid-aged stages. We identified stable strain-specific differentially methylated regions (DMRs) that overlap with cis-eQTLs. Moreover, transcription factor binding site motifs are more likely to be disrupted in the DMRs, suggesting the potential impact of genetic variations on epigenetic regulation of HSC aging. We further demonstrated that strain-specific DMRs have more profound effects on the aging of B6 HSCs than D2 stem cells. Transposons are differentially regulated by the DMRs in the two strains, in which D2 HSCs are prone to transposon insertion. This study comprehensively investigated the effects of natural genetic and epigenetic variations on HSC aging. Loss of DNA methylation is an epigenetic signature of stem cell aging, and DNA methylation variations correlates with genetic variations, both contributing to inter-individual differences in stem cell and perhaps organismal aging. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 591-591 ◽  
Author(s):  
Fabienne Brenet ◽  
Michelle Moh ◽  
Patricia Funk ◽  
Daoqui You ◽  
Agnes J. Viale ◽  
...  

Abstract Abstract 591 The human genome is adorned with methylated cytosine residues that function in the epigenetic guidance of cellular differentiation and development. Cellular interpretation of this epigenetic mark is incompletely understood and tissue specific patterns of DNA methylation vary with age, can be altered by environmental factors, and are often abnormal in human disease. Aberrant DNA methylation is a common means by which tumor suppressor genes (TSGs) are inactivated during carcinogenesis (Baylin, Herman, Graff, Vertino and Issa 1998; Laird and Jaenisch 1996; Singal and Ginder 1999). Unlike genetic mechanisms of gene inactivation, such as gene deletion and mutation, the epigenetic silencing of TSGs by promoter hypermethylation is potentially reversible. This has led to the broad interest of cancer biologists in the study of DNA methylation. Method: We developed a method for genome-wide analysis of DNA methylation by using a recombinant protein containing a methyl-CpG binding domain (MBD) to enrich methylated DNA fragments that are then identified by massively parallel sequencing using the SOLiD sequencer (ABI). We generated ∼15-million sequence tags per specimen and wrote custom R-language algorithms to develop an analytical platform with which to study DNA methylation. We used this technology to study the pharmacodynamics of DNA methylation in acute myelogenous leukemia (AML) cells following exposure to the hypomethylating agent, 5-aza-2'-deoxycytidine (decitabine). We compared DNA methylation patterns before and after decitabine treatment with transcriptional activity revealed by microarrays (Illumina) and quantitative PCR. We found that Sequence Tag Analysis of Methylation Profiles (STAMP) permits highly reproducible, genome-wide identification of DNA methylation density at near base-pair resolution. This method is cost effective and can be extended, without modification, to any mapped genome. Results: STAMP analysis revealed patterned DNA methylation at all scales across the genome: from whole chromosomes to individual genes. We found that densely methylated elements (DMEs) of the human genome are often highly conserved or closely associated with gene coding regions and promoters. We identified distinct patterns of DNA methylation surrounding the transcription start and termination sites of all genes. These methylation patterns are associated with transcriptional activity of neighboring genes. Interestingly, genes with a densely methylated transcription start site (TSS) have little methylation in the surrounding regions whereas genes with little or no methylation at the TSS have disproportionately higher methylation within their gene bodies. In untreated cells, we detected ∼75,000 DMEs (false discovery rate <0.01) with a median length ∼600 bp and with 75% being less than 960bp. The longest DMEs extend up to ∼24000 bp and are composed of microsatellite clusters. The majority of the DMEs are not classic CpG islands (CGI) but are GC-rich regions (median 57% GC) with a greater than expected incidence of CpG dinucleotides (median CpG observed/expected 0.49): results that suggest the definition of a CGI excludes the majority of the methylated human genome. Although the pattern of DNA methylation was qualitatively similar in cells treated with decitabine, we found that the density of methylation was generally lower and fewer DMEs (∼50,000) were identified. Decitabine treatment led to increased expression of ∼800 genes involved in cell cycle control, apoptosis and cellular differentiation whereas the ∼50 genes with downregulated expression were most commonly involved in RNA metabolism. Distinct pre-treatment DNA methylation patterns were associated with, and tended to predict, the transcriptional activity following treatment with decitabine. Summary: We developed and utilized a powerful new technology to uncover the genome-wide effects of decitabine on DNA methylation patterns in AML. We found that although decitabine induces genome-wide DNA hypomethylation, its effect on transcription depends upon the pattern of DNA methylation prior to treatment. The STAMP methodology leverages the power and flexibility of massively parallel sequencing with the high selectivity of the MBD for its natural ligand, methyl-CpG. This assay permits robust, unbiased and highly sensitive whole-genome identification of methylated DNA segments. Disclosures: No relevant conflicts of interest to declare.


Hippocampus ◽  
2016 ◽  
Vol 26 (8) ◽  
pp. 1008-1020 ◽  
Author(s):  
M.R. Penner ◽  
R.R. Parrish ◽  
L.T. Hoang ◽  
T.L. Roth ◽  
F.D. Lubin ◽  
...  

Author(s):  
Fabien Pichon ◽  
Florence Busato ◽  
Simon Jochems ◽  
Beatrice Jacquelin ◽  
Roger Le Grand ◽  
...  

AbstractThe Infinium Human Methylation450 and Methylation EPIC BeadChips are useful tools for the study of the methylation state of hundreds of thousands of CpG across the human genome at affordable cost. However, in a wide range of experimental settings in particular for studies in infectious or brain-related diseases, human samples cannot be easily obtained. Hence, due to their close developmental, immunological and neurological proximity with humans, non-human primates are used in many research fields of human diseases and for preclinical research. Few studies have used DNA methylation microarrays in simian models. Microarrays designed for the analysis of DNA methylation patterns in the human genome could be useful given the genomic proximity between human and nonhuman primates. However, there is currently information lacking about the specificity and usability of each probe for many nonhuman primate species, including rhesus macaques (Macaca mulatta), originating from Asia, and African green monkeys originating from West-Africa (Chlorocebus sabaeus). Rhesus macaques and African green monkeys are among the major nonhuman primate models utilized in biomedical research. Here, we provide a precise evaluation and re-annotation of the probes of the two microarrays for the analysis of genome-wide DNA methylation patterns in these two Cercopithecidae species. We demonstrate that up to 162,000 of the 450K and 255,000 probes of the EPIC BeadChip can be reliably used in Macaca mulatta or Chlorocebus sabaeus. The annotation files are provided in a format compatible with a variety of preprocessing, normalization and analytical pipelines designed for data analysis from 450K/EPIC arrays, facilitating high-throughput DNA methylation analyses in Macaca mulatta and Chlorocebus sabaeus. They provide the opportunity to the research community to focus their analysis only on those probes identified as reliable. The described analytical workflow leaves the choice to the user to balance coverage versus specificity and can also be applied to other Cercopithecidae species.


AGE ◽  
2014 ◽  
Vol 36 (3) ◽  
Author(s):  
Wilma T. Steegenga ◽  
Mark V. Boekschoten ◽  
Carolien Lute ◽  
Guido J. Hooiveld ◽  
Philip J. de Groot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document