scholarly journals 7SL RNA represses p53 translation by competing with HuR

2014 ◽  
Vol 42 (15) ◽  
pp. 10099-10111 ◽  
Author(s):  
Kotb Abdelmohsen ◽  
Amaresh C Panda ◽  
Min-Ju Kang ◽  
Rong Guo ◽  
Jiyoung Kim ◽  
...  

Abstract Noncoding RNAs (ncRNAs) and RNA-binding proteins are potent post-transcriptional regulators of gene expression. The ncRNA 7SL is upregulated in cancer cells, but its impact upon the phenotype of cancer cells is unknown. Here, we present evidence that 7SL forms a partial hybrid with the 3′-untranslated region (UTR) of TP53 mRNA, which encodes the tumor suppressor p53. The interaction of 7SL with TP53 mRNA reduced p53 translation, as determined by analyzing p53 expression levels, nascent p53 translation and TP53 mRNA association with polysomes. Silencing 7SL led to increased binding of HuR to TP53 mRNA, an interaction that led to the promotion of p53 translation and increased p53 abundance. We propose that the competition between 7SL and HuR for binding to TP53 3′UTR contributes to determining the magnitude of p53 translation, in turn affecting p53 levels and the growth-suppressive function of p53. Our findings suggest that targeting 7SL may be effective in the treatment of cancers with reduced p53 levels.

2020 ◽  
Author(s):  
Sibylle Mitschka ◽  
Christine Mayr

AbstractThe TP53 gene encodes the tumor suppressor p53, which is functionally inactivated in many human cancers. Numerous studies found that overexpression of specific microRNAs or RNA-binding proteins can alter p53 expression through binding to cis-regulatory elements in the TP53 3′ untranslated region (3′UTR). Although these studies suggested that 3′UTR-mediated p53 expression regulation could play a role in tumorigenesis or could be exploited for therapeutic purposes, they did not investigate post-transcriptional regulation of the native TP53 gene. We used CRISPR/Cas9 to delete the human and mouse p53 3′UTRs while preserving endogenous mRNA processing. This revealed that the endogenous 3′UTR is not involved in regulating p53 mRNA or protein expression neither in steady state nor after genotoxic stress. As we were able to confirm the previously observed repressive effects of the isolated 3′UTR in reporter assays, our data highlight the importance of genetic models in the validation of post-transcriptional gene regulatory effects.


2019 ◽  
Vol 14 (7) ◽  
pp. 621-627 ◽  
Author(s):  
Youhuang Bai ◽  
Xiaozhuan Dai ◽  
Tiantian Ye ◽  
Peijing Zhang ◽  
Xu Yan ◽  
...  

Background: Long noncoding RNAs (lncRNAs) are endogenous noncoding RNAs, arbitrarily longer than 200 nucleotides, that play critical roles in diverse biological processes. LncRNAs exist in different genomes ranging from animals to plants. Objective: PlncRNADB is a searchable database of lncRNA sequences and annotation in plants. Methods: We built a pipeline for lncRNA prediction in plants, providing a convenient utility for users to quickly distinguish potential noncoding RNAs from protein-coding transcripts. Results: More than five thousand lncRNAs are collected from four plant species (Arabidopsis thaliana, Arabidopsis lyrata, Populus trichocarpa and Zea mays) in PlncRNADB. Moreover, our database provides the relationship between lncRNAs and various RNA-binding proteins (RBPs), which can be displayed through a user-friendly web interface. Conclusion: PlncRNADB can serve as a reference database to investigate the lncRNAs and their interaction with RNA-binding proteins in plants. The PlncRNADB is freely available at http://bis.zju.edu.cn/PlncRNADB/.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haiyan Shen ◽  
Guomin Luo ◽  
Qingjuan Chen

AbstractApproximately 338,000 patients are diagnosed with kidney cancer worldwide each year, and renal cell carcinoma (RCC), which is derived from renal epithelium, accounts for more than ninety percent of the malignancy. Next generation RNA sequencing has enabled the identification of novel long noncoding RNAs (lncRNAs) in the past 10 years. Recent studies have provided extensive evidence that lncRNAs bind to chromatin modification proteins, transcription factors, RNA-binding proteins and microRNAs, and thereby modulate gene expression through regulating chromatin status, gene transcription, pre-mRNA splicing, mRNA decay and stability, protein translation and stability. In vitro and in vivo studies have demonstrated that over-expression of oncogenic lncRNAs and silencing of tumor suppressive lncRNAs are a common feature of human RCC, and that aberrant lncRNA expression is a marker for poor patient prognosis, and is essential for the initiation and progression of RCC. Because lncRNAs, compared with mRNAs, are expressed in a tissue-specific manner, aberrantly expressed lncRNAs can be better targeted for the treatment of RCC through screening small molecule compounds which block the interaction between lncRNAs and their binding proteins or microRNAs.


Author(s):  
J. J. David Ho ◽  
Jeffrey H. S. Man ◽  
Jonathan H. Schatz ◽  
Philip A. Marsden

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yarden Katz ◽  
Feifei Li ◽  
Nicole J Lambert ◽  
Ethan S Sokol ◽  
Wai-Leong Tam ◽  
...  

The conserved Musashi (Msi) family of RNA binding proteins are expressed in stem/progenitor and cancer cells, but generally absent from differentiated cells, consistent with a role in cell state regulation. We found that Msi genes are rarely mutated but frequently overexpressed in human cancers and are associated with an epithelial-luminal cell state. Using ribosome profiling and RNA-seq analysis, we found that Msi proteins regulate translation of genes implicated in epithelial cell biology and epithelial-to-mesenchymal transition (EMT), and promote an epithelial splicing pattern. Overexpression of Msi proteins inhibited the translation of Jagged1, a factor required for EMT, and repressed EMT in cell culture and in mammary gland in vivo. Knockdown of Msis in epithelial cancer cells promoted loss of epithelial identity. Our results show that mammalian Msi proteins contribute to an epithelial gene expression program in neural and mammary cell types.


2018 ◽  
Vol 52 (1) ◽  
pp. 465-487 ◽  
Author(s):  
José Vicente Gomes-Filho ◽  
Michael Daume ◽  
Lennart Randau

Advances in genome-wide sequence technologies allow for detailed insights into the complexity of RNA landscapes of organisms from all three domains of life. Recent analyses of archaeal transcriptomes identified interaction and regulation networks of noncoding RNAs in this understudied domain. Here, we review current knowledge of small, noncoding RNAs with important functions for the archaeal lifestyle, which often requires adaptation to extreme environments. One focus is RNA metabolism at elevated temperatures in hyperthermophilic archaea, which reveals elevated amounts of RNA-guided RNA modification and virus defense strategies. Genome rearrangement events result in unique fragmentation patterns of noncoding RNA genes that require elaborate maturation pathways to yield functional transcripts. RNA-binding proteins, e.g., L7Ae and LSm, are important for many posttranscriptional control functions of RNA molecules in archaeal cells. We also discuss recent insights into the regulatory potential of their noncoding RNA partners.


Sign in / Sign up

Export Citation Format

Share Document