scholarly journals Recruitment of Rec8, Pds5 and Rad61/Wapl to meiotic homolog pairing, recombination, axis formation and S-phase

Author(s):  
Soogil Hong ◽  
Jeong H Joo ◽  
Hyeseon Yun ◽  
Nancy Kleckner ◽  
Keun P Kim

Abstract We have explored the meiotic roles of cohesin modulators Pds5 and Rad61/Wapl, in relation to one another, and to meiotic kleisin Rec8, for homolog pairing, all physically definable steps of recombination, prophase axis length and S-phase progression, in budding yeast. We show that Pds5 promotes early steps of recombination and thus homolog pairing, and also modulates axis length, with both effects independent of a sister chromatid. [Pds5+Rec8] promotes double-strand break formation, maintains homolog bias for crossover formation and promotes S-phase progression. Oppositely, the unique role of Rad61/Wapl is to promote non-crossover recombination by releasing [Pds5+Rec8]. For this effect, Rad61/Wapl probably acts to maintain homolog bias by preventing channeling into sister interactions. Mysteriously, each analyzed molecule has one role that involves neither of the other two. Overall, the presented findings suggest that Pds5’s role in maintenance of sister chromatid cohesion during the mitotic prophase-analogous stage of G2/M is repurposed during meiosis prophase to promote interactions between homologs.

2000 ◽  
Vol 14 (4) ◽  
pp. 493-503 ◽  
Author(s):  
Rita S. Cha ◽  
Beth M. Weiner ◽  
Scott Keeney ◽  
Job Dekker ◽  
N. Kleckner

Spo11p is a key mediator of interhomolog interactions during meiosis. Deletion of the SPO11 gene decreases the length of S phase by ∼25%. Rec8p is a key coordinator of meiotic interhomolog and intersister interactions. Deletion of the REC8 gene increases S-phase length, by ∼10% in wild-type and ∼30% in aspo11Δ background. Thus, the progression of DNA replication is modulated by interchromosomal interaction proteins. Thespo11–Y135F DSB (double strand break) catalysis-defective mutant is normal for S-phase modulation and DSB-independent homolog pairing but is defective for later events, formation of DSBs, and synaptonemal complexes. Thus, earlier and later functions of Spo11 are defined. We propose that meiotic S-phase progression is linked directly to development of specific chromosomal features required for meiotic interhomolog interactions and that this feedback process is built upon a more fundamental mechanism, common to all cell types, by which S-phase progression is coupled to development of nascent intersister connections and/or related aspects of chromosome morphogenesis. Roles for Rec8 and/or Spo11 in progression through other stages of meiosis are also revealed.


2011 ◽  
Vol 192 (2) ◽  
pp. 263-276 ◽  
Author(s):  
Jibak Lee ◽  
Tatsuya Hirano

Cohesins are multi-subunit protein complexes that regulate sister chromatid cohesion during mitosis and meiosis. Here we identified a novel kleisin subunit of cohesins, RAD21L, which is conserved among vertebrates. In mice, RAD21L is expressed exclusively in early meiosis: it apparently replaces RAD21 in premeiotic S phase, becomes detectable on the axial elements in leptotene, and stays on the axial/lateral elements until mid pachytene. RAD21L then disappears, and is replaced with RAD21. This behavior of RAD21L is unique and distinct from that of REC8, another meiosis-specific kleisin subunit. Remarkably, the disappearance of RAD21L at mid pachytene correlates with the completion of DNA double-strand break repair and the formation of crossovers as judged by colabeling with molecular markers, γ-H2AX, MSH4, and MLH1. RAD21L associates with SMC3, STAG3, and either SMC1α or SMC1β. Our results suggest that cohesin complexes containing RAD21L may be involved in synapsis initiation and crossover recombination between homologous chromosomes.


2021 ◽  
Vol 7 (11) ◽  
pp. eabe7920
Author(s):  
Meihui Song ◽  
Binyuan Zhai ◽  
Xiao Yang ◽  
Taicong Tan ◽  
Ying Wang ◽  
...  

Meiotic chromosomes have a loop/axis architecture, with axis length determining crossover frequency. Meiosis-specific Pds5 depletion mutants have shorter chromosome axes and lower homologous chromosome pairing and recombination frequency. However, it is poorly understood how Pds5 coordinately regulates these processes. In this study, we show that only ~20% of wild-type level of Pds5 is required for homolog pairing and that higher levels of Pds5 dosage-dependently regulate axis length and crossover frequency. Moderate changes in Pds5 protein levels do not explicitly impair the basic recombination process. Further investigations show that Pds5 does not regulate chromosome axes by altering Rec8 abundance. Conversely, Rec8 regulates chromosome axis length by modulating Pds5. These findings highlight the important role of Pds5 in regulating meiosis and its relationship with Rec8 to regulate chromosome axis length and crossover frequency with implications for evolutionary adaptation.


2021 ◽  
Vol 22 (11) ◽  
pp. 5483
Author(s):  
Luisa F. Bustamante-Jaramillo ◽  
Celia Ramos ◽  
Cristina Martín-Castellanos

Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.


2004 ◽  
Vol 24 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Andreas Rothfuss ◽  
Markus Grompe

ABSTRACT The detailed mechanisms of DNA interstrand cross-link (ICL) repair and the involvement of the Fanconi anemia (FA)/BRCA pathway in this process are not known. Present models suggest that recognition and repair of ICL in human cells occur primarily during the S phase. Here we provide evidence for a refined model in which ICLs are recognized and are rapidly incised by ERCC1/XPF independent of DNA replication. However, the incised ICLs are then processed further and DNA double-strand breaks (DSB) form exclusively in the S phase. FA cells are fully proficient in the sensing and incision of ICL as well as in the subsequent formation of DSB, suggesting a role of the FA/BRCA pathway downstream in ICL repair. In fact, activation of FANCD2 occurs slowly after ICL treatment and correlates with the appearance of DSB in the S phase. In contrast, activation is rapid after ionizing radiation, indicating that the FA/BRCA pathway is specifically activated upon DSB formation. Furthermore, the formation of FANCD2 foci is restricted to a subpopulation of cells, which can be labeled by bromodeoxyuridine incorporation. We therefore conclude that the FA/BRCA pathway, while being dispensable for the early events in ICL repair, is activated in S-phase cells after DSB have formed.


2004 ◽  
Vol 24 (21) ◽  
pp. 9568-9579 ◽  
Author(s):  
Yanjiao Zhou ◽  
Teresa S.-F. Wang

ABSTRACT DNA replication depends critically upon chromatin structure. Little is known about how the replication complex overcomes the nucleosome packages in chromatin during DNA replication. To address this question, we investigate factors that interact in vivo with the principal initiation DNA polymerase, DNA polymerase α (Polα). The catalytic subunit of budding yeast Polα (Pol1p) has been shown to associate in vitro with the Spt16p-Pob3p complex, a component of the nucleosome reorganization system required for both replication and transcription, and with a sister chromatid cohesion factor, Ctf4p. Here, we show that an N-terminal region of Polα (Pol1p) that is evolutionarily conserved among different species interacts with Spt16p-Pob3p and Ctf4p in vivo. A mutation in a glycine residue in this N-terminal region of POL1 compromises the ability of Pol1p to associate with Spt16p and alters the temporal ordered association of Ctf4p with Pol1p. The compromised association between the chromatin-reorganizing factor Spt16p and the initiating DNA polymerase Pol1p delays the Pol1p assembling onto and disassembling from the late-replicating origins and causes a slowdown of S-phase progression. Our results thus suggest that a coordinated temporal and spatial interplay between the conserved N-terminal region of the Polα protein and factors that are involved in reorganization of nucleosomes and promoting establishment of sister chromatin cohesion is required to facilitate S-phase progression.


2006 ◽  
Vol 23 (5) ◽  
pp. 723-732 ◽  
Author(s):  
George-Lucian Moldovan ◽  
Boris Pfander ◽  
Stefan Jentsch

2009 ◽  
Vol 181 (4) ◽  
pp. 687-688
Author(s):  
Hiromichi Naruyama ◽  
Yoshiyuki Hashimoto ◽  
Kenjiro Kohri

Sign in / Sign up

Export Citation Format

Share Document