scholarly journals Mutations in transcription factor CP2-like 1 may cause a novel syndrome with distal renal tubulopathy in humans

Author(s):  
Verena Klämbt ◽  
Max Werth ◽  
Ana C Onuchic-Whitford ◽  
Maike Getwan ◽  
Thomas M Kitzler ◽  
...  

Abstract Background An underlying monogenic cause of early-onset chronic kidney disease (CKD) can be detected in ∼20% of individuals. For many etiologies of CKD manifesting before 25 years of age, >200 monogenic causative genes have been identified to date, leading to the elucidation of mechanisms of renal pathogenesis. Methods In 51 families with echogenic kidneys and CKD, we performed whole-exome sequencing to identify novel monogenic causes of CKD. Results We discovered a homozygous truncating mutation in the transcription factor gene transcription factor CP2-like 1 (TFCP2L1) in an Arabic patient of consanguineous descent. The patient developed CKD by the age of 2 months and had episodes of severe hypochloremic, hyponatremic and hypokalemic alkalosis, seizures, developmental delay and hypotonia together with cataracts. We found that TFCP2L1 was localized throughout kidney development particularly in the distal nephron. Interestingly, TFCP2L1 induced the growth and development of renal tubules from rat mesenchymal cells. Conversely, the deletion of TFCP2L1 in mice was previously shown to lead to reduced expression of renal cell markers including ion transporters and cell identity proteins expressed in different segments of the distal nephron. TFCP2L1 localized to the nucleus in HEK293T cells only upon coexpression with its paralog upstream-binding protein 1 (UBP1). A TFCP2L1 mutant complementary DNA (cDNA) clone that represented the patient’s mutation failed to form homo- and heterodimers with UBP1, an essential step for its transcriptional activity. Conclusion Here, we identified a loss-of-function TFCP2L1 mutation as a potential novel cause of CKD in childhood accompanied by a salt-losing tubulopathy.

Author(s):  
Xing-Biao Qiu ◽  
Xin-Kai Qu ◽  
Ruo-Gu Li ◽  
Hua Liu ◽  
Ying-Jia Xu ◽  
...  

AbstractBackground:The zinc finger transcription factor CASZ1 plays a key role in cardiac development and postnatal adaptation, and in mice, deletion of theMethods:The coding exons and splicing junction sites of theResults:A novel heterozygous CASZ1 mutation, p.K351X, was identified in an index patient with DCM. Genetic analysis of the mutation carrier’s family showed that the mutation co-segregated with DCM, which was transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation, which was absent in 400 referential chromosomes, altered the amino acid that was highly conserved evolutionarily. Biological investigations revealed that the mutant CASZ1 had no transcriptional activity.Conclusions:The current study reveals


2016 ◽  
Vol 113 (16) ◽  
pp. 4434-4439 ◽  
Author(s):  
Aoi Wakabayashi ◽  
Jacob C. Ulirsch ◽  
Leif S. Ludwig ◽  
Claudia Fiorini ◽  
Makiko Yasuda ◽  
...  

Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptional cis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders.


2018 ◽  
Author(s):  
Brooke E. Chambers ◽  
Gary F. Gerlach ◽  
Karen H. Chen ◽  
Eleanor G. Clark ◽  
Ignaty Leshchiner ◽  
...  

AbstractRenal functional units known as nephrons undergo patterning events during development that create a segmental array of cellular populations with discrete physiological tasks. Knowledge about the terminal differentiation programs of each nephron segment has central importance for understanding kidney disease and to advance regenerative medicine, as mammalian nephrons grown in organoid cultures from pluripotent cells fail to terminally differentiate. Here, from a novel forward genetic screen using zebrafish we report the discovery that transcription factor AP-2 alpha (tfap2a) coordinates a gene regulatory network that controls the progression of nephron distal segment progenitors into the differentiated state. Overexpression of tfap2a rescued differentiation in mutants and caused ectopic expression of distal segment markers in wild-type nephrons, indicating tfap2a is sufficient to instigate the distal segment differentiation program. tfap2a/2b deficiency exacerbated distal nephron segment differentiation defects, revealing functional redundancy where tfap2a has a dominant role upstream of its family member. With further genetic studies, we assembled a blueprint of the tfap2a gene regulatory network during nephrogenesis. We demonstrate that tfap2a acts downstream of Iroquois homeobox 3b, a conserved distal lineage transcription factor. tfap2a controls a circuit consisting of irx1a, tfap2b, and genes encoding solute transporters that dictate the specialized metabolic functions of the distal nephron segments, and we show for the first time that this regulatory node is distinct from the pathway circuits controlling aspects such as apical-basal polarity and ciliogenesis during the differentiation process. Thus, our studies reveal new insights into the genetic control of differentiation, where tfap2a regulates the suite of segment transporter traits. These findings have relevance for understanding renal birth defects, as well as efforts to recapitulate nephrogenesis in vivo to make functional units that can facilitate organoid applications such as drug discovery and regenerative therapies.Summary StatementHere, we report for the first time that transcription factor AP-2 alpha (tfap2a) controls the progression from nephron progenitor into the fully differentiated state. This fundamentally deepens our knowledge about the genetic control of kidney development.


2019 ◽  
Author(s):  
Ed Zandro M. Taroc ◽  
Ankana Naik ◽  
Jennifer M. Lin ◽  
Nicolas B. Peterson ◽  
David L. Keefe ◽  
...  

AbstractDuring mammalian development, gonadotropin-releasing-hormone-1 neurons (GnRH-1ns) migrate from the developing vomeronasal organ (VNO) into the brain asserting control of pubertal onset and fertility. Recent data suggest that correct development of the olfactory ensheathing cells (OEC) is imperative for normal GnRH-1 neuronal migration. However, the full ensemble of molecular pathways that regulate OEC development remains to be fully deciphered. Loss-of-function of the transcription factor Gli3 is known to disrupt olfactory development, however, if Gli3 plays a role in GnRH-1 neuronal development is unclear. By analyzing Gli3 extra-toe mutants (Gli3Xt/Xt), we found that Gli3 loss-of-function compromises the onset of achaete-scute family bHLH transcription factor 1 (Ascl-1) positive vomeronasal progenitors and the formation of OEC in the nasal mucosa. Surprisingly, GnRH-1 neurogenesis was intact in Gli3Xt/Xt mice but they displayed significant defects in GnRH-1 neuronal migration. In contrast, Ascl-1null mutants showed reduced neurogenesis for both vomeronasal and GnRH-1ns but less severe defects in OEC development. These observations suggest that Gli3 is critical for OEC development in the nasal mucosa and subsequent GnRH-1 neuronal migration. However, the non-overlapping phenotypes between Ascl-1 and Gli3 mutants indicate that Ascl-1, while crucial for GnRH-1 neurogenesis, is not required for normal OEC development. Since Kallmann syndrome (KS) is characterized by abnormal GnRH migration, we examined whole exome sequencing data from KS subjects. We identified and validated a GLI3 loss-of-function variant in a KS individual. These findings provide new insights into GnRH-1 and OECs development and demonstrate that human GLI3 mutations contribute to KS etiology.Significance statementThe transcription factor Gli3 is necessary for correct development of the olfactory system. However, if Gli3 plays a role in controlling GnRH-1 neuronal development has not been addressed. We found that Gli3 loss-of-function compromises the onset of Ascl1+ vomeronasal progenitors, formation of olfactory ensheathing cells in the nasal mucosa and impairs GnRH-1 neuronal migration to the brain. By analyzing Ascl1 null mutants we dissociated the neurogenic defects observed in Gli3 mutants from lack of olfactory ensheathing cells in the nasal mucosa, moreover, we discovered that Ascl1 is necessary for GnRH-1 ontogeny. Analyzing human whole exome sequencing data, we identified a GLI3 loss-of-function variant in a KS individual. Our data suggest that GLI3 is a candidate gene contributing to KS etiology.


Author(s):  
Bryn D. Webb ◽  
Hilary Hotchkiss ◽  
Pankaj Prasun ◽  
Bruce D. Gelb ◽  
Lisa Satlin

AbstractKCNJ16 encodes Kir5.1 and acts in combination with Kir4.1, encoded by KCNJ10, to form an inwardly rectifying K+ channel expressed at the basolateral membrane of epithelial cells in the distal nephron. This Kir4.1/Kir5.1 channel is critical for controlling basolateral membrane potential and K+ recycling, the latter coupled to Na-K-ATPase activity, which determines renal Na+ handling. Previous work has shown that Kcnj16−/− mice and SSKcnj16−/− rats demonstrate hypokalemic, hyperchloremic metabolic acidosis. Here, we present the first report of a patient identified to have biallelic loss-of-function variants in KCNJ16 by whole exome sequencing who presented with chronic metabolic acidosis with exacerbations triggered by minor infections.


2021 ◽  
pp. ASN.2020121762
Author(s):  
Lei Dai ◽  
Jingzhi Li ◽  
Liangqun Xie ◽  
Weinan Wang ◽  
Yang Lu ◽  
...  

Background: Bilateral renal agenesis (BRA) is a lethal congenital anomaly caused by the failure of normal development of both kidneys early in embryonic development. Oligohydramnios upon fetal ultrasonography reveals BRA. Although exact causes are not clear, BRA is associated with mutations in many renal development genes. However, molecular diagnostics cannot pick up many clinical cases. Nephronectin (NPNT) may be a candidate protein for widening diagnosis. It is essential in kidney development and knockout of Npnt in mice frequently leads to kidney agenesis or hypoplasia. Methods: A consanguineous Han family experienced three cases of induced abortion in the second trimester of pregnancy due to suspicion of BRA. Whole-exome sequencing-(WES)-:based homozygosity mapping detected underlying genetic factors, and a knock-in mouse model confirmed the renal agenesis phenotype. Results: WES and evaluation of homozygous regions in II-3 and II-4 revealed a pathological homozygous frameshift variant in NPNT (NM_001184690:exon8:c.777dup/p.Lys260*), which leads to a premature stop in the next codon. The truncated NPNT protein exhibited decreased expression, as confirmed in vivo by the overexpression of WT and mutated NPNT. A knock-in mouse model homozygous for the detected Npnt mutation replicated the BRA phenotype. Conclusions: A biallelic loss-of-function NPNT mutation causing an autosomal recessive form of BRA in humans was confirmed by the corresponding phenotype of knock-in mice. Our results identify a novel genetic cause of BRA, revealing a new target for genetic diagnosis, prenatal diagnosis, and preimplantation diagnosis for families with BRA.


Author(s):  
Muhammad Muzammal ◽  
Muhammad Zeeshan Ali ◽  
Beatrice Brugger ◽  
Jasmin Blatterer ◽  
Safeer Ahmad ◽  
...  

Abstract Background L-2-hydroxyglutaric aciduria (L2HGA) is a rare neurometabolic disorder that occurs due to accumulation of L-2-hydroxyglutaric acid in the cerebrospinal fluid (CSF), plasma and urine. The clinical manifestation of L2HGA includes intellectual disability, cerebellar ataxia, epilepsy, speech problems and macrocephaly. Methods In the present study, we ascertained a multigenerational consanguineous Pakistani family with 5 affected individuals. Clinical studies were performed through biochemical tests and brain CT scan. Locus mapping was carried out through genome-wide SNP genotyping, whole exome sequencing and Sanger sequencing. For in silico studies protein structural modeling and docking was done using I-TASSER, Cluspro and AutoDock VINA tools. Results Affected individuals presented with cognitive impairment, gait disturbance, speech difficulties and psychomotor delay. Radiologic analysis of a male patient revealed leukoaraiosis with hypoattenuation of cerebral white matter, suggestive of hypomyelination. Homozygosity mapping in this family revealed a linkage region on chromosome 14 between markers rs2039791 and rs781354. Subsequent whole exome analysis identified a novel frameshift mutation NM_024884.3:c.180delG, p.(Ala62Profs*24) in the second exon of L2HGDH. Sanger sequencing confirmed segregation of this mutation with the disease phenotype. The identification of the most N-terminal loss of function mutation published thus far further expands the mutational spectrum of L2HGDH.


Author(s):  
Yousef Binamer ◽  
Muzamil A. Chisti

AbstractKindler syndrome (KS) is a rare photosensitivity disorder with autosomal recessive mode of inheritance. It is characterized by acral blistering in infancy and childhood, progressive poikiloderma, skin atrophy, abnormal photosensitivity, and gingival fragility. Besides these major features, many minor presentations have also been reported in the literature. We are reporting two cases with atypical features of the syndrome and a new feature of recurrent neutropenia. Whole exome sequencing analysis was done using next-generation sequencing which detected a homozygous loss-of-function (LOF) variant of FERMT1 in both patients. The variant is classified as a pathogenic variant as per the American College of Medical Genetics and Genomics guidelines. Homozygous LOF variants of FERMT1 are a common mechanism of KS and as such confirm the diagnosis of KS in our patients even though the presentation was atypical.


2019 ◽  
Vol 19 (9) ◽  
pp. 683-687 ◽  
Author(s):  
Tawfiq Froukh ◽  
Ammar Hawwari

Background: Keratoconus (KC) is usually bilateral, noninflammatory progressive corneal ectasia in which the cornea becomes progressively thin and conical. Despite the strong evidence of genetic contribution in KC, the etiology of KC is not understood in most cases. Methods: In this study, we used whole-exome sequencing to identify the genetic cause of KC in two sibs in a consanguineous family. The Homozygous frameshift variant NM_001253826.1:c.60delC;p.Leu21Cysfs*6 was identified in the gene Nacetylgalactosaminyltransferase 14 (GALNT14). The variant does not exist in all public databases neither in our internal exome database. Moreover, no database harbours homozygous loss of function variants in the candidate gene. Result: GALNT14 catalyses the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D- galactosamine residue to a serine or threonine residue on target proteins especially Mucins. Conclusion: As alterations of mucin’s glycosylation are linked to a number of eye diseases, we demonstrate in this study an association between the truncated protein GALNT14 and KC.


Sign in / Sign up

Export Citation Format

Share Document