P13.11 Transcriptional CDK inhibitors, CYC065 and THZ1 promote apoptosis in preclinical models of primary and recurrent GBM tumour cells and glioma stem cells

2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii34-ii35
Author(s):  
V Juric ◽  
H Duessmann ◽  
H Jahns ◽  
M Verreault ◽  
A Idbaih ◽  
...  

Abstract BACKGROUND Activation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation of CDKs are a feature of many tumours including glioblastoma (GBM), the most common and aggressive primary brain tumour. Patient resistance to the current standard of care, temozolomide and radiotherapy, is common and highlights the need to discover more effective treatment strategies. Additionally, glioma stem cells (GSCs), tumour initiating cells contribute to treatment resistance in GBM. Targeting GBM tumour cells and GSCs using transcriptional CDK inhibitors, CYC065 and THZ1 is a potential novel treatment to prevent relapse of the tumour. MATERIAL AND METHODS The therapeutic efficacy of two CDK inhibitors (CKIs) was tested in a panel of ten low-passage GBM patient-derived gliomasphere cultures and semi-in vivo chick embryo xenograft models. Specifically, transcriptional inhibitors targeting CDK9/2 (CYC065) and CDK7 (THZ1) were used. Mechanism of cell death was examined following CKI treatment. Additionally, dependence on anti-apoptotic proteins was studied using genetic depletion and BH3 profiling. Fluorescence activated cell sorting (FACS) and light-sheet fluorescence microscopy (LSFM) were employed to study stem cell populations in recurrent GBM and evaluation of CKI efficacy against GSCs. RESULTS We here demonstrate that CYC065 and THZ1 treatments cause loss of cell viability and induce caspase-dependent apoptosis in primary and recurrent patient-derived gliomaspheres while sparing primary cortical neurons. Importantly, apoptosis responses manifested across a range of time points that significantly correlated with the cell doubling time. Mechanistically, CYC065 and THZ1 downregulate the anti-apoptotic protein Mcl-1, which suffices to sensitise gliomasphere cultures to treatment-induced apoptosis in a Bim-dependent manner. Additionally, high expression levels of chemo- and radio-resistant GSCs were found in recurrent gliomaspheres. CKIs induced apoptosis in isolated CD133 and CD44 biomarker-positive cells while TMZ was ineffective, highlighting the potential of these drugs to overcome resistance to conventional chemotherapy. Additionally, using LSFM we shown that CD133, CD44 GSC biomarker-negative cells convert into GSC biomarker-positive cells and contribute to the enrichment in GSCs in recurrent GBM which could potentially explain the TMZ ineffectiveness. Finally, CKIs reduced proliferation and promoted apoptosis in chick embryo xenograft models of primary and recurrent GBM. CONCLUSION Collectively, these data demonstrate that CYC065 and THZ1 display high anti-cancer activity in primary and recurrent GBM and provide scientific rationale for the further development of CDK inhibitors to potentiate their clinical utilization in the future.

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1182
Author(s):  
Viktorija Juric ◽  
Heiko Düssmann ◽  
Martine L. M. Lamfers ◽  
Jochen H. M. Prehn ◽  
Markus Rehm ◽  
...  

Glioma stem cells (GSCs) are tumour initiating cells which contribute to treatment resistance, temozolomide (TMZ) chemotherapy and radiotherapy, in glioblastoma (GBM), the most aggressive adult brain tumour. A major contributor to the uncontrolled tumour cell proliferation in GBM is the hyper activation of cyclin-dependent kinases (CDKs). Due to resistance to standard of care, GBMs relapse in almost all patients. Targeting GSCs using transcriptional CDK inhibitors, CYC065 and THZ1 is a potential novel treatment to prevent relapse of the tumour. TCGA-GBM data analysis has shown that the GSC markers, CD133 and CD44 were significantly upregulated in GBM patient tumours compared to non-tumour tissue. CD133 and CD44 stem cell markers were also expressed in gliomaspheres derived from recurrent GBM tumours. Light Sheet Florescence Microscopy (LSFM) further revealed heterogeneous expression of these GSC markers in gliomaspheres. Gliomaspheres from recurrent tumours were highly sensitive to transcriptional CDK inhibitors, CYC065 and THZ1 and underwent apoptosis while being resistant to TMZ. Apoptotic cell death in GSC subpopulations and non-stem tumour cells resulted in sphere disruption. Collectively, our study highlights the potential of these novel CKIs to induce cell death in GSCs from recurrent tumours, warranting further clinical investigation.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Viktorija Juric ◽  
Lance Hudson ◽  
Joanna Fay ◽  
Cathy E. Richards ◽  
Hanne Jahns ◽  
...  

AbstractActivation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.


2021 ◽  
Author(s):  
Jun Sun ◽  
Wei Wu ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
...  

Background: WT161, as a selective HDAC6 inhibitor, has been shown to play anti-tumor effects on several kinds of cancers. The aim of this study is to explore the roles of WT161 in osteosarcoma and its underlying mechanisms. Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were established to evaluate the anti-proliferative effect of WT161 in vivo. Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein level of PTEN and decreased the phosphorylation level of AKT. More importantly, WT161 show synergistic inhibition with 5-FU on osteosarcoma cells in vitro and in vivo. Conclusions: These results indicate that WT161 inhibits the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


2020 ◽  
Author(s):  
Jun Sun ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
Renfeng Liu ◽  
...  

Abstract Background: WT161 as a new selective HDAC6 inhibitor has been shown to play anti-tumor effects on multiple myeloma and breast cancer. However, the role of WT161 in osteosarcoma remains unclear. The aim of this study is to explore the role of WT161 in osteosarcoma and its underlying mechanisms.Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were esatablished to evaluate the anti-proliferative effect of WT161 in vivo.Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein expression level of PTEN and decreased the phosphorylation level of AKT. Notably, WT161 shows synergistically inhibitory effects on osteosarcoma cell combined with 5-FU. Animal experiment results show WT161 inhibits the growth of osteosarcoma tumor and further illustrates that WT161 and 5-FU have a synergistic efficiency in osteosarcoma.Conclusions: These results indicate that WT161 inhibiting the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


Author(s):  
Ying Tian ◽  
Liang Wang ◽  
Zhiqiang Qiu ◽  
Yulun Xu ◽  
Rongrong Hua

We reported that a high level of autophagy was initiated by oxygen-glucose deprivation (OGD) and was maintained in neurons even after oxygen-glucose deprivation followed by reoxygenation (OGD/R), accompanied by neuronal apoptosis. This study focused on autophagy-induced apoptosis and its signaling network, especially the role of endoplasmic reticulum stress (ERS). Analysis of primary cultured cortical neurons from mice showed that the autophagy-induced apoptosis depended on Caspase-8 and -9 but not Caspase-12. This finding did not mean that the endoplasmic reticulum did not participate in this process. Increases in the levels of endoplasmic reticulum (ER) biomarkers and Binding immunoglobulin protein (BiP) were induced by autophagy in OGD/R-treated neurons. In addition, as an apoptotic transcription factor induced by ER stress, C/EBP homologous protein (CHOP) expression was significantly increased in neurons after OGD/R. This result suggested that the autophagy-Bip-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons. It revealed that ER induced apoptosis in neurons suffering from OGD/R injury in an ER stress-CHOP-dependent manner rather than a caspase-12-dependent manner. However, more research on signaling or cross-linking networks and intermediate links are needed. The realization of caspase-12-independent BiP-CHOP neuronal apoptosis pathway has expanded our understanding of the neuronal apoptosis network, which may eventually provide endogenous interventional strategies for OGD/R injury after stroke.


2011 ◽  
Vol 23 (8) ◽  
pp. 1348-1357 ◽  
Author(s):  
Sarit Kahana ◽  
Susan Finniss ◽  
Simona Cazacu ◽  
Cunli Xiang ◽  
Hae-Kyung Lee ◽  
...  

2015 ◽  
Vol 4 (2) ◽  
pp. 226-238 ◽  
Author(s):  
Sung-Hak Kim ◽  
Kaushal Joshi ◽  
Ravesanker Ezhilarasan ◽  
Toshia R. Myers ◽  
Jason Siu ◽  
...  

2014 ◽  
Vol 16 (suppl 5) ◽  
pp. v63-v63
Author(s):  
Z. Jing ◽  
L. Li ◽  
J. Liu ◽  
M. Wang ◽  
Y. Ban ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi25-vi25
Author(s):  
Costanza Lo Cascio ◽  
James McNamara ◽  
Ernesto Luna Melendez ◽  
Erika Lewis ◽  
Matthew Dufault ◽  
...  

Abstract Glioblastoma (GBM) is characterized by an aberrant yet druggable epigenetic landscape. One major family of epigenetic regulators, the Histone Deacetylases (HDACs), are considered promising therapeutic targets for GBM due to their repressive influences on transcription. Although HDACs share redundant functions and common substrates, the unique isoform-specific roles of different HDACs in GBM remain unclear. There is a temporal and cell-type specific requirement of HDAC1 and 2 during normal brain development, with HDAC2 being indispensable in neural stem cells. Here, we specifically investigated the functional importance of HDAC1 in glioma stem cells, an HDAC isoform whose expression increases with brain tumor grade and is correlated with decreased survival. Using cell-based and biochemical assays, transcriptomic analyses and patient-derived xenograft models, we report that knockdown of HDAC1 alone has profound effects on the glioma stem cell (GSC) phenotype and survival in a p53-dependent manner. HDAC1 is the essential class I deacetylase in glioma stem cells, and its loss is not compensated for by its paralogue HDAC2 or other HDACs. Loss of HDAC1 expression significantly suppresses viability of GSCs harboring functional p53, and that HDAC2 expression is completely dispensable in GSCs. In addition, HDAC1 silencing but not HDAC2, stabilizes and acetylates p53 in GSCs, resulting in upregulation of key p53 target genes and induction of programmed cell death. Furthermore, ablation of HDAC1 function alone results in histone hyperacetylation and a collapse of the stemness state in GSCs. We demonstrate significant suppression in tumor growth upon targeting of HDAC1 and identify compensatory pathways that provide insights into combination therapies for GBM. Our study highlights the importance of HDAC1 in GBM and the need to develop isoform-specific HDAC inhibitor drugs.


2008 ◽  
Vol 19 (12) ◽  
pp. 5082-5092 ◽  
Author(s):  
Hege Ugland ◽  
Andrew C. Boquest ◽  
Soheil Naderi ◽  
Philippe Collas ◽  
Heidi Kiil Blomhoff

The differentiation capacity of mesenchymal stem cells has been extensively studied, but little is known on cell cycle–related events in the proliferation and differentiation phases of these cells. Here, we demonstrate that exposure to cAMP-increasing agents inhibits proliferation of adipose stem cells (ASCs). This antiproliferative effect is associated with both reduced cdk2 activity and pRB phosphorylation. Concomitantly, however, the level of cyclin E markedly increases upon cAMP induction, indicating that cyclin E may have cdk2-independent functions in these cells besides its role as a cdk2 activator. Indeed, we found indications of a cdk2-independent role of cyclin E in DNA damage–induced apoptosis. 8-CPT-cAMP sensitizes ASCs to γ-irradiation–induced apoptosis, an effect abolished by knockdown of cyclin E. Moreover, cAMP induces early activation of ERK, leading to reduced degradation of cyclin E. The cAMP-mediated up-regulation of cyclin E was blocked by knockdown of ERK or by an inhibitor of the ERK kinase MEK. We conclude that cAMP inhibits cdk2 activity and pRB phosphorylation, leading to reduced ASC proliferation. Concomitant with this growth inhibition, however, cyclin E levels are increased in a MEK/ERK-dependent manner. Our results suggest that cyclin E plays an important, cdk2-independent role in genotoxic stress–induced apoptosis in mesenchymal stem cells.


Sign in / Sign up

Export Citation Format

Share Document