CSIG-07. ACTIVATION OF THE ADHESION G PROTEIN-COUPLED RECEPTOR GPR133 BY ANTIBODIES AGAINST THE N-TERMINUS

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi34-vi34
Author(s):  
Gabriele Stephan ◽  
Joshua Frenster ◽  
Niklas Ravn-Boess ◽  
Devin Bready ◽  
Jordan Wilcox ◽  
...  

Abstract We recently demonstrated that GPR133 (ADGRD1), a member of the adhesion G protein-coupled receptor (aGPCR) family, is necessary for growth of glioblastoma (GBM) and is de novo expressed in GBM relative to normal brain tissue. We therefore postulate that GPR133 represents a novel target in GBM, which merits development of therapeutics. Like most aGPCRs, GPR133 is characterized by an intracellular C-terminus, 7 plasma membrane-spanning α-helices and a large extracellular N-terminus. The N-terminus possesses a conserved GPCR autoproteolysis-inducing (GAIN) domain that catalyzes cleavage at a GPCR proteolysis site (GPS), resulting in a C-terminal fragment (CTF) and an N-terminal fragment (NTF). We showed that dissociation of the cleaved NTF and CTF at the plasma membrane increases canonical signaling of GPR133, which is mediated by coupling to Gs and increase in cytosolic cAMP. Toward characterizing the effect of biologics on GPR133 function, we overexpressed wild-type or mutant forms of GPR133 in HEK293T cells and patient-derived GBM cells lines. Treatment of these cells with antibodies specifically targeting the NTF of GPR133 increased receptor activation in a dose-dependent manner. No effects were elicited with an antibody against the receptor’s intracellular C-terminus. Interestingly, cells overexpressing a cleavage-deficient mutant GPR133 (H543R) did not respond to antibody stimulation, suggesting that the effect is cleavage-dependent. Following antibody treatment, co-purification of the GPR133 NTF and the N-terminal antibody from the cell culture supernatant indicated the formation of antibody-NTF complexes. Analysis of these complexes suggested that antibody binding stimulated the dissociation of the NTF from the CTF. However, the increased flexibility of the GAIN domain and NTF after cleavage, independently of dissociation, may also endow the receptor with responsiveness to the effects of the antibodies. These data constitute a proof-of-concept paradigm of modulation of GPR133 function with antibodies. This work provides rationale for pursuing development of biologics targeting GPR133 in GBM.

2020 ◽  
Author(s):  
Joshua D. Frenster ◽  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Devin Bready ◽  
Jordan Wilcox ◽  
...  

SUMMARYGPR133 (ADGRD1), an adhesion G protein-coupled receptor (GPCR), is necessary for growth of glioblastoma (GBM), a brain malignancy. The extracellular N-terminus of GPR133 is thought to be autoproteolytically cleaved into an N-terminal and a C-terminal fragment (NTF and CTF). Nevertheless, the role of this cleavage in receptor activation remains unclear. Here, we show that the wild-type (WT) receptor is cleaved after protein synthesis and generates significantly more canonical signaling than an uncleavable point mutant (H543R) in patient-derived GBM cultures and HEK293T cells. However, the resulting NTF and CTF remain non-covalently bound until the receptor is trafficked to the plasma membrane, where we find NTF-CTF dissociation. Using a fusion of the hPAR1 receptor N-terminus and the CTF of GPR133, we demonstrate that thrombin-induced cleavage and shedding of the hPAR1 NTF increases receptor signaling. This study supports a model where dissociation of the NTF at the plasma membrane promotes GPR133 activation.Highlights-GPR133 is intramolecularly cleaved in patient-derived GBM cultures-Cleaved GPR133 signals at higher efficacy than the uncleavable GPR133 H543R mutant-The N- and C-terminal fragments (NTF and CTF) of GPR133 dissociate at the plasma membrane-Acute thrombin-induced cleavage of the human PAR1 NTF from the GPR133 CTF increases signalingeTOC BlurbFrenster et al. demonstrate intramolecular cleavage of the adhesion GPCR GPR133 in glioblastoma and HEK293T cells. The resulting N- and C-terminal fragments dissociate at the plasma membrane to increase canonical signaling. The findings suggest dissociation of GPR133’s N-terminus at the plasma membrane represents a major mechanism of receptor activation.


2007 ◽  
Vol 18 (8) ◽  
pp. 2960-2969 ◽  
Author(s):  
Xiaoshan Jiang ◽  
Jeffrey L. Benovic ◽  
Philip B. Wedegaertner

G protein–coupled receptor (GPCR) kinases (GRKs) specifically phosphorylate agonist-occupied GPCRs at the inner surface of the plasma membrane (PM), leading to receptor desensitization. Here we show that the C-terminal 30 amino acids of GRK6A contain multiple elements that either promote or inhibit PM localization. Disruption of palmitoylation by individual mutation of cysteine 561, 562, or 565 or treatment of cells with 2-bromopalmitate shifts GRK6A from the PM to both the cytoplasm and nucleus. Likewise, disruption of the hydrophobic nature of a predicted amphipathic helix by mutation of two leucines to alanines at positions 551 and 552 causes a loss of PM localization. Moreover, acidic amino acids in the C-terminus appear to negatively regulate PM localization; mutational replacement of several acidic residues with neutral or basic residues rescues PM localization of a palmitoylation-defective GRK6A. Last, we characterize the novel nuclear localization, showing that nuclear export of nonpalmitoylated GRK6A is sensitive to leptomycin B and that GRK6A contains a potential nuclear localization signal. Our results suggest that the C-terminus of GRK6A contains a novel electrostatic palmitoyl switch in which acidic residues weaken the membrane-binding strength of the amphipathic helix, thus allowing changes in palmitoylation to regulate PM versus cytoplasmic/nuclear localization.


2007 ◽  
Vol 35 (4) ◽  
pp. 729-732 ◽  
Author(s):  
A.C. Conner ◽  
J. Simms ◽  
J. Barwell ◽  
M. Wheatley ◽  
D.R. Poyner

The receptor for CGRP (calcitonin gene-related peptide) is a heterodimer between a GPCR (G-protein-coupled receptor), CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). Models have been produced of RAMP1 and CLR. It is likely that the C-terminus of CGRP interacts with the extracellular N-termini of CLR and RAMP1; the extreme N-terminus of CLR is particularly important and may interact directly with CGRP and also with RAMP1. The N-terminus of CGRP interacts with the TM (transmembrane) portion of the receptor; the second ECL (extracellular loop) is especially important. Receptor activation is likely to involve the relative movements of TMs 3 and 6 to create a G-protein-binding pocket, as in Family A GPCRs. Pro321 in TM6 appears to act as a pivot. At the base of TMs 2 and 3, Arg151, His155 and Glu211 may form a loose equivalent of the Family A DRY (Asp-Arg-Tyr) motif. Although the details of this proposed activation mechanism clearly do not apply to all Family B GPCRs, the broad outlines may be conserved.


2010 ◽  
Vol 79 (2) ◽  
pp. 262-269 ◽  
Author(s):  
Kamonchanok Sansuk ◽  
Xavier Deupi ◽  
Ivan R. Torrecillas ◽  
Aldo Jongejan ◽  
Saskia Nijmeijer ◽  
...  

Science ◽  
2007 ◽  
Vol 318 (5852) ◽  
pp. 914c-914c ◽  
Author(s):  
C. A. Johnston ◽  
B. R. Temple ◽  
J.-G. Chen ◽  
Y. Gao ◽  
E. N. Moriyama ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (65) ◽  
pp. 52563-52570 ◽  
Author(s):  
Saurabh K. Srivastava ◽  
Rajesh Ramaneti ◽  
Margriet Roelse ◽  
Hien Duy Tong ◽  
Elwin X. Vrouwe ◽  
...  

Flowcell with micro-IDEs (250–500 μm) covered with both stable and reverse transfected cells overexpressing membrane receptors to demonstrate impedance responses to serial injections of analyte.


Sign in / Sign up

Export Citation Format

Share Document