PATH-11. PDGFA INITIATES ABERRANT MITOSIS AND MALIGNANT TRANSFORMATION OF NEURAL PROGENITOR CELLS

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi117-vi117
Author(s):  
Michael Blough ◽  
Hiba Omairi ◽  
Cameron Grisdale ◽  
J Gregory Cairncross

Abstract BACKGROUND Imagining ways to prevent or treat glioblastoma (GBM) have been hindered by a lack of understanding of its pathogenesis. Although platelet derived growth factor-A (PDGFA) overexpression may be an early event, critical details of the biology of GBM, and tools to study its initiation have been lacking. Indeed, many PDGF-driven models replicate its microscopic appearance, but not genomic architecture. Recently, we reported an in vitro model of GBM initiation that overcomes this barrier to authenticity. METHODS We used a method developed to establish neural stem cell cultures to investigate the effects of PDGF-A on cells derived from the subventricular zone (SVZ), a putative region where the cells of origins for GBM are derived. We micro-dissect SVZ tissue from p53-null and wild-type adult mice, culture cells in media supplemented with PDGF-A, and assess cell viability, proliferation, mitotic capacity, and genome stability. RESULTS Paradoxical to its canonical role as a growth factor, we observe abrupt and substantial cell death in PDGF-A. Abnormal mitosis was the first observable alteration and occurred immediately in cells of both p53 wild-type and null genotypes: wild-type cells did not survive in PDGF-A, whereas a fraction of null cells evade apoptosis. Evading cells displayed attenuated proliferation accompanied by early chromosomal gains and losses. After approximately 100 days in PDGF-A, surviving cells suddenly proliferate rapidly, acquire growth factor independence, and become tumorigenic in immune-competent mice. Transformed cells continue to display highly abnormal mitotic phenotypes with complex karyotypes similar to GBM, had a neural progenitor cell (NPC) lineage profile, and were resistant to PDGFR-alpha inhibition. CONCLUSION Abnormal mitosis induced by PDGF-A initiates and perpetuates the genome instability that transforms p53-null neural progenitor cells to yield cancers with the types of recurring chromosomal gains and losses that characterize human GBM.

2020 ◽  
Vol 22 (8) ◽  
pp. 1150-1161 ◽  
Author(s):  
Alexandra K Bohm ◽  
Jessica DePetro ◽  
Carmen E Binding ◽  
Amanda Gerber ◽  
Nicholas Chahley ◽  
...  

Abstract Background Imagining ways to prevent or treat glioblastoma (GBM) has been hindered by a lack of understanding of its pathogenesis. Although overexpression of platelet derived growth factor with two A-chains (PDGF-AA) may be an early event, critical details of the core biology of GBM are lacking. For example, existing PDGF-driven models replicate its microscopic appearance, but not its genomic architecture. Here we report a model that overcomes this barrier to authenticity. Methods Using a method developed to establish neural stem cell cultures, we investigated the effects of PDGF-AA on subventricular zone (SVZ) cells, one of the putative cells of origin of GBM. We microdissected SVZ tissue from p53-null and wild-type adult mice, cultured cells in media supplemented with PDGF-AA, and assessed cell viability, proliferation, genome stability, and tumorigenicity. Results Counterintuitive to its canonical role as a growth factor, we observed abrupt and massive cell death in PDGF-AA: wild-type cells did not survive, whereas a small fraction of null cells evaded apoptosis. Surviving null cells displayed attenuated proliferation accompanied by whole chromosome gains and losses. After approximately 100 days in PDGF-AA, cells suddenly proliferated rapidly, acquired growth factor independence, and became tumorigenic in immune-competent mice. Transformed cells had an oligodendrocyte precursor-like lineage marker profile, were resistant to platelet derived growth factor receptor alpha inhibition, and harbored highly abnormal karyotypes similar to human GBM. Conclusion This model associates genome instability in neural progenitor cells with chronic exposure to PDGF-AA and is the first to approximate the genomic landscape of human GBM and the first in which the earliest phases of the disease can be studied directly.


Glia ◽  
2010 ◽  
Vol 59 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Meizhang Li ◽  
Cathleen J. Chang ◽  
Justin D. Lathia ◽  
Li Wang ◽  
Holly L. Pacenta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document