NIMG-17. SYSTEMATIC REVIEW OF LITERATURE EVALUATING MACHINE LEARNING ALGORITHMS TO DEVELOP OUTCOME PREDICTION MODELS IN GLIOMA USING MOLECULAR IMAGING WITH AMINO ACID PET

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi131-vi131
Author(s):  
Julia Shatalov ◽  
W R Brim ◽  
Harry Subramanian ◽  
John Bazaar ◽  
Michele Johnson ◽  
...  

Abstract PURPOSE Machine learning (ML) algorithms demonstrate accurate prediction of tumor segmentation, molecular pathology, and outcomes in gliomas using MRI and recently application of ML tools has expanded into molecular imaging with PET. We performed a systematic review to evaluate the role and applications of ML in characterization of gliomas with PET. METHODS Four databases were searched by medical school librarian and confirmed by an independent librarian: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science-Core Collection. The search strategy used keywords and controlled vocabulary combining the terms for: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and related terms. All articles were reviewed by at least 2 independent reviewers at abstract screening, full text review, data extraction, and bias analysis using TRIPOD. RESULTS An initial 11,727 publications were imported to Covidence for screening. After review, 1135 studies moved to full-text review and 715 articles were included. Twelve publications included PET imaging of gliomas. All publications used single-center databases (3-73 patients) with distribution of tracers being [18F]-FDG (1), [18F]-FET (6), [11C]-MET (3), [18F]-FDOPA (1), and [18F]-AMP (1). All but 2 papers used supervised machine learning algorithms. Number of features ranged from 4-19,284. Nine papers manually extracted semiquantitative features TBRmax, TBRmean, SUV, TTP, in addition to demographics. Study outcomes included prediction of treatment response, survival, molecular subtypes, tumor grade, segmentation, and accuracy of image fusion. Accuracy ranged from 0.64-0.95 with AUC 0.43-0.9. CONCLUSION ML can be used on small datasets of PET imaging of brain tumors. While majority of the clinical scans are performed with FDG-PET, the machine learning approaches are being applied to mostly amino acid tracers. Extending ML approaches to FDG-PET, which is more common in clinical practice, is recommended. Overall, ML has potential as a useful tool for predicting patient outcomes and improving image postprocessing.

2019 ◽  
Author(s):  
Sun Jae Moon ◽  
Jin Seub Hwang ◽  
Rajesh Kana ◽  
John Torous ◽  
Jung Won Kim

BACKGROUND Over the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, its application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder. However, given its complexity and potential clinical implications, there is ongoing need for further research on its accuracy. OBJECTIVE The current study aims to summarize the evidence for the accuracy of use of machine learning algorithms in diagnosing autism spectrum disorder (ASD) through systematic review and meta-analysis. METHODS MEDLINE, Embase, CINAHL Complete (with OpenDissertations), PsyINFO and IEEE Xplore Digital Library databases were searched on November 28th, 2018. Studies, which used a machine learning algorithm partially or fully in classifying ASD from controls and provided accuracy measures, were included in our analysis. Bivariate random effects model was applied to the pooled data in meta-analysis. Subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false negative and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw SROC curves, and obtain area under the curve (AUC) and partial AUC. RESULTS A total of 43 studies were included for the final analysis, of which meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural MRI subgroup meta-analysis (12 samples with 1,776 participants) showed the sensitivity at 0.83 (95% CI-0.76 to 0.89), specificity at 0.84 (95% CI -0.74 to 0.91), and AUC/pAUC at 0.90/0.83. An fMRI/deep neural network (DNN) subgroup meta-analysis (five samples with 1,345 participants) showed the sensitivity at 0.69 (95% CI- 0.62 to 0.75), the specificity at 0.66 (95% CI -0.61 to 0.70), and AUC/pAUC at 0.71/0.67. CONCLUSIONS Machine learning algorithms that used structural MRI features in diagnosis of ASD were shown to have accuracy that is similar to currently used diagnostic tools.


2020 ◽  
Author(s):  
Michael Moor ◽  
Bastian Rieck ◽  
Max Horn ◽  
Catherine Jutzeler ◽  
Karsten Borgwardt

Background: Sepsis is among the leading causes of death in intensive care units (ICU) worldwide and its recognition, particularly in the early stages of the disease, remains a medical challenge. The advent of an affluence of available digital health data has created a setting in which machine learning can be used for digital biomarker discovery, with the ultimate goal to advance the early recognition of sepsis. Objective: To systematically review and evaluate studies employing machine learning for the prediction of sepsis in the ICU. Data sources: Using Embase, Google Scholar, PubMed/Medline, Scopus, and Web of Science, we systematically searched the existing literature for machine learning-driven sepsis onset prediction for patients in the ICU. Study eligibility criteria: All peer-reviewed articles using machine learning for the prediction of sepsis onset in adult ICU patients were included. Studies focusing on patient populations outside the ICU were excluded. Study appraisal and synthesis methods: A systematic review was performed according to the PRISMA guidelines. Moreover, a quality assessment of all eligible studies was performed. Results: Out of 974 identified articles, 22 and 21 met the criteria to be included in the systematic review and quality assessment, respectively. A multitude of machine learning algorithms were applied to refine the early prediction of sepsis. The quality of the studies ranged from "poor" (satisfying less than 40% of the quality criteria) to "very good" (satisfying more than 90% of the quality criteria). The majority of the studies (n= 19, 86.4%) employed an offline training scenario combined with a horizon evaluation, while two studies implemented an online scenario (n= 2,9.1%). The massive inter-study heterogeneity in terms of model development, sepsis definition, prediction time windows, and outcomes precluded a meta-analysis. Last, only 2 studies provided publicly-accessible source code and data sources fostering reproducibility. Limitations: Articles were only eligible for inclusion when employing machine learning algorithms for the prediction of sepsis onset in the ICU. This restriction led to the exclusion of studies focusing on the prediction of septic shock, sepsis-related mortality, and patient populations outside the ICU. Conclusions and key findings: A growing number of studies employs machine learning to31optimise the early prediction of sepsis through digital biomarker discovery. This review, however, highlights several shortcomings of the current approaches, including low comparability and reproducibility. Finally, we gather recommendations how these challenges can be addressed before deploying these models in prospective analyses. Systematic review registration number: CRD42020200133


2019 ◽  
Author(s):  
Georgy Kopanitsa ◽  
Aleksei Dudchenko ◽  
Matthias Ganzinger

BACKGROUND It has been shown in previous decades, that Machine Learning (ML) has a huge variety of possible implementations in medicine and can be very helpful. Neretheless, cardiovascular diseases causes about third of of all global death. Does ML work in cardiology domain and what is current progress in that regard? OBJECTIVE The review aims at (1) identifying studies where machine-learning algorithms were applied in the cardiology domain; (2) providing an overview based on identified literature of the state of the art of the ML algorithm applying in cardiology. METHODS For organizing this review, we have employed PRISMA statement. PRISMA is a set of items for reporting in systematic reviews and meta-analyses, focused on the reporting of reviews evaluating randomized trials, but can also be used as a basis for reporting systematic review. For the review, we have adopted PRISMA statement and have identified the following items: review questions, information sources, search strategy, selection criteria. RESULTS In total 27 scientific articles or conference papers written in English and reporting about implementation of an ML-method or algorithm in cardiology domain were included in this review. We have examined four aspects: aims of ML-systems, methods, datasets and evaluation metrics. CONCLUSIONS We suppose, this systematic review will be helpful for researchers developing machine-learning system for a medical domain and in particular for cardiology.


Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 365
Author(s):  
Taha ValizadehAslani ◽  
Zhengqiao Zhao ◽  
Bahrad A. Sokhansanj ◽  
Gail L. Rosen

Machine learning algorithms can learn mechanisms of antimicrobial resistance from the data of DNA sequence without any a priori information. Interpreting a trained machine learning algorithm can be exploited for validating the model and obtaining new information about resistance mechanisms. Different feature extraction methods, such as SNP calling and counting nucleotide k-mers have been proposed for presenting DNA sequences to the model. However, there are trade-offs between interpretability, computational complexity and accuracy for different feature extraction methods. In this study, we have proposed a new feature extraction method, counting amino acid k-mers or oligopeptides, which provides easier model interpretation compared to counting nucleotide k-mers and reaches the same or even better accuracy in comparison with different methods. Additionally, we have trained machine learning algorithms using different feature extraction methods and compared the results in terms of accuracy, model interpretability and computational complexity. We have built a new feature selection pipeline for extraction of important features so that new AMR determinants can be discovered by analyzing these features. This pipeline allows the construction of models that only use a small number of features and can predict resistance accurately.


Sign in / Sign up

Export Citation Format

Share Document