TMOD-06. CREATION OF PATIENT-DERIVED LOWER GRADE GLIOMA ORGANOID MODELS FOR PERSONALIZED TREATMENT RESPONSE ASSESSMENT

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi216-vi217
Author(s):  
Kalil Abdullah ◽  
Joseph Buehler ◽  
Cylaina Bird ◽  
MIlan Savani ◽  
Alex Sternisha ◽  
...  

Abstract Creating in vitro models of lower grade glioma represents a major challenge in neuro-oncology research. There are few such models that are tractable and widely used, which has hindered understanding of the biology of these tumors. Recently, substantial progress has been made in generating patient-derived in vitro organoid models of high grade glioma, but modeling lower grade disease remains difficult. Based on our experience creating neurosphere cultures of lower grade astrocytomas from genetically engineered mice, we hypothesized that modifying patient-derived organoid generation protocols to incorporate physiological oxygen levels would allow establishment and propagation of lower grade glioma organoids. In this study, we show that this approach supports efficient organoid model generation from primary glioma specimens across all histological subtypes and tumor grades (WHO Grade I-IV, n = 20). These organoid models retain key characteristics of their respective parental tumors, including IDH mutations and other genetic alterations, metabolite profiles, intratumoral heterogeneity, cellular composition, and cytoarchitectural features. Importantly, lower grade glioma organoids can be cultured for months and reanimated after biobanking. Our high success rate ( >90%) in establishing organoid models from primary lower grade glioma tissue samples further highlighted opportunities for treatment response assessments. To perform longitudinal measurements of therapy-induced changes in glioma organoid viability, we designed a novel, non-invasive imaging assay (termed rapid apex imaging) to determine real-time treatment response in low and high grade gliomas. We evaluated longitudinal responses of glioblastoma and IDH1 R132H-positive Grade II astrocytoma organoids to temozolomide and olaparib with and without radiation treatment. We quantified topological changes in organoid structure by building a bioinformatics tool to translate imaging data into a cellularity metric as a biomarker of organoid response. Our work unveils an effective new method to create in vitro, personalized models of lower grade glioma that supports elucidation of treatment sensitivity profiles.

2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii26-ii26
Author(s):  
Kaoru Tamura ◽  
Yaeko Furuhashi ◽  
Motoki Inaji ◽  
Daisuke Kobayashi ◽  
Takahiro Ogishima ◽  
...  

Abstract OBJECT The revised 2016 WHO Classification of Tumours of the Central Nervous System incorporates genetic alterations into the classification system, with the goal of creating more homogenous disease categories with greater prognostic value. In this study, we reclassified 103 consecutive lower grade gliomas using the revised 2016 WHO classification and examined for 11C-methionine uptake and prognosis. METHODS 103 consecutive lower grade glioma patients (Grade 2 in 41 patients, Grade 3 in 62 patients) treated at Tokyo Medical and Dental University Hospital from 2000 to 2018 were included in this study. The IDH1/2, ATRX and 1p19q status were analyzed using tumor samples. The tumor-to-normal ratio (T/N) of 11 C-methionine uptake was calculated by dividing the maximum standardized uptake value (SUV) for the tumor by the mean SUV of the normal brain. RESULT In the integrated diagnosis, 11 astrocytomas and 17 anaplastic astrocytomas were diagnosed as “IDH-mutant”, while 14 astrocytomas and 29 anaplastic astrocytomas were diagnosed as “IDH-wild”. In the 32 oligodendroglial tumors, 12 oligodendrogliomas and 9 anaplastic oligodendrogliomas were diagnosed as “IDH-mutant and 1p/19q-codeleted”. The concordance rate with 1p19q co-deletion and ATRX retention was 94.7%. The median T/N ratios in oligodendroglial tumors with “IDH-mutant and 1p/19q-codeleted” were 1.83 in Grade 2 and 2.83 in grade 3, which were significantly higher than those in astrocytic tumors with “IDH-mutant” (G2: 1.38, G3:1.62). Kaplan-Meier survival analysis revealed that oligodendroglial tumors with “IDH-mutant and 1p/19q-codeleted” had significantly better outcomes regardless of WHO grade. Overall survival was 90.9% at 5 years and 77.9% at 10 years in oligodendroglial tumors with “IDH-mutant and 1p/19q-codeleted”. CONCLUSIONS The results indicated that lower grade glioma categories reclassified with molecular classification correlate with the T/N ratio of methionine and the prognosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chenxing Wu ◽  
Hongwang Song ◽  
Xiaojun Fu ◽  
Shouwei Li ◽  
Tao Jiang

Background. Glioma is the most common and lethal tumor in the central nervous system (CNS). More than 70% of WHO grade II/III gliomas were found to harbor isocitrate dehydrogenase (IDH) mutations which generated targetable metabolic vulnerabilities. Focusing on the metabolic vulnerabilities, some targeted therapies, such as NAMPT, have shown significant effects in preclinical and clinical trials. Methods. We explored the TCGA as well as CGGA database and analyzed the RNA-seq data of lower grade gliomas (LGG) with the method of weighted correlation network analysis (WGCNA). Differential expressed genes were screened, and coexpression relationships were grouped together by performing average linkage hierarchical clustering on the topological overlap. Clinical data were used to conduct Kaplan–Meier analysis. Results. In this study, we identified ACAA2 as a prognostic factor in IDH mutation lower grade glioma with the method of weighted correlation network analysis (WGCNA). The difference of ACAA2 gene expressions between the IDH wild-type (IDH-WT) group and the IDH mutant (IDH-MUT) group suggested that there may be different potential targeted therapies based on the fatty acid metabolic vulnerabilities, which promoted the personalized treatment for LGG patients.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi16-vi16
Author(s):  
Yoshinobu Takahashi ◽  
Hayato Takeuchi ◽  
Seisuke Tanigawa ◽  
Takanari Okamoto ◽  
Naoya Hashimoto

Abstract Background and Purpose: In the cIMPACT-Now update 3, it was proposed that grade 2 astrocytic gliomas without IDH-mutations and grade 3 astrocytic gliomas with TERT promoter mutations should be designated as diffuse IDH wildtype astrocytic glioma with molecular features of WHO grade IV glioblastoma. Therefore, we investigated whether this group of tumors actually corresponds to grade IV prognostically in cases that we encountered ourselves. Cases and Methods: Among the 65 patients having primary astrocytic glioma who were operated in our hospital from January 2016 to March 2021, the prognostic values of seven patients with lower-grade glioma, IDH wildtype, and pTERT mutant were investigated. Results: Among the seven patients, the median age was 59 years (50–66 years). Four of them had anaplastic astrocytoma, two had diffuse astrocytoma, and no tumor lesion could be identified upon histological examination for one patient. The male-to-female ratio was 1:6. MGMT methylation was observed in two patients (29%). The median survival was 20 months, with a significantly worse prognosis when compared with lower-grade glioma without the TERT promoter mutation (13 patients: median survival 40 months), but a better prognosis when compared with glioblastoma (45 patients: median survival 13 months) (Log-rank p = 0.0051). Conclusion: Although EGFR amplification, combined whole chromosome 7 gain, and whole chromosome 10 loss were not examined, the prognostic value of lower-grade glioma, IDH wildtype, and pTERT mutant was not as poor as that of glioblastoma. Further investigation is required to confirm whether these groups of tumors should be treated in the same way as grade IV glioblastoma.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii25-ii25
Author(s):  
Hiroyuki Uchida ◽  
Toshiaki Akahane ◽  
Nayuta Higa ◽  
Mari Kirishima ◽  
Tsubasa Hiraki ◽  
...  

Abstract PURPOSE We are developing a 48-gene OncoPanel (Kagoshima Brain Tumor 48 OncoPanel) specializing in glioma diagnosis. Clinical application of genetic diagnosis derived from genetic alterations detected by OncoPanel, including IDH mutation, 1p/19q-codeletion, and other gene mutations in lower-grade glioma was verified. METHODS The 48 genes consist of 24 genes related to glioma and 24 genes on chromosomes 1 and 19. DNA was extracted from tumor FFPE samples and blood samples, and then single nucleotide variants and copy number variants were detected using next-generation sequencer. RESULTS Among the 99 diffuse glioma cases that had undergone OncoPanel analysis by July 2019, 40 cases diagnosed histologically as WHO grade 2 or 3 diffuse glioma were included. The integrated diagnosis by conventional gene analysis were Diffuse astrocytoma 10 cases, anaplastic astrocytoma 11 cases, oligodendroglioma 10 cases, anaplastic oligodendroglioma 9 cases. IDH1 mutation was detected in 30 cases, of which in 19 cases 1p/19q-codeletion was detected, all with TERT mutation. Among 11 cases with 1p/19q-non-codeletion, ATRX mutation was detected in 10 cases and was almost mutually exclusive with TERT mutation. In 10 cases without IDH mutation, EGFR amplification or mutation was detected in 6 cases, of which 4 cases were accompanied by TERT mutation. DISCUSSION KBT48 can detect TERT and ATRX mutations in a mutually exclusive manner and can improve the classification accuracy of oligodendroglioma and astrocytoma. Groups with gene profiles similar to glioblastoma with EGFR amplification/mutation and TERT mutation can also be classified. CONCLUSIONS In the diagnostic classification of lower-grade glioma, KBT48 can well classify into oligodendroglioma group, astrocytoma group and glioblastoma-like group, and is considered to be applicable in clinical practice.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi10-vi10
Author(s):  
Shigeru Yamaguchi ◽  
Yukitomo Ishi ◽  
Michinari Okamoto ◽  
Ryousuke Sawaya ◽  
Hiroaki Motegi ◽  
...  

Abstract Background: WHO grade 2 and 3 adult gliomas are nowadays getting together as lower-grade gliomas (LrGGs), but we had been recognized grade 3 (G3) tumors as high-grade and grade 2 (G2) tumors as low-grade. In this report, we investigate the treatment and prognosis of the patients with LrGG harboring IDH mutations in our institutions. Methods:We retrospectively review primary treatments and their prognosis for LrGG patients with IDH mutation since 2003. They categorized as astrocytomas and oligodendrogliomas according to 1p/19q loss-of-heterozygosity status. Prognosis were evaluated by overall survival. Postoperative primary treatments applied chemo-radiotherapy (CRT), radiotherapy only (RT), chemotherapy only (CT), and observation (Ob). Results: 36 astrocytomas and 60 oligodendrogliomas were identified. In astrocytomas, the patients with G3 (N=16) were treated by CRT (N=14) or CT (N=2), and the patients with G2 (N=20) were treated by CRT (N=2), RT (N=3), CT (N=3), or Ob (N=12). In oligodendrogliomas, the patients with G3 (N=34) were treated by CRT (N=32) or CT (N=2), and the patients with G2 (N=26) were treated by CRT (N=3), RT (N=1), CT (N=5), or Ob (N=17). 10-year survival rate (10yOS) of astrocytomas and oligodendrogliomas are 54% and 90%, respectively (p=0.002). According to histological malignancy, 10yOS of G3 and G2 astrocytomas were 54% and 54%, respectively (p=0.97) and that of G3 and G2 oligodendrogliomas were 86% and 100%, respectively (p=0.64). In both group, there are no different of prognosis according to histological malignancy. Discussion: There was no prognostic different between G2 and G3 astrocytomas in our institution. Since the treatment intensity for G2 and G3 astrocytomas were clearly different, the primary treatment for G2 astrocytomas might be insufficient. On the other hand, there were no prognostic different between G2 and G3 oligodendrogliomas in our institution, as with recent reports, so the primary treatment intensity for oligodendrogliomas should be appropriate.


2020 ◽  
Vol 78 (1) ◽  
pp. 34-38
Author(s):  
Burcu BITERGE-SUT

Abstract Brain tumors are one of the most common causes of cancer-related deaths around the world. Angiogenesis is critical in high-grade malignant gliomas, such as glioblastoma multiforme. Objective: The aim of this study is to comparatively analyze the angiogenesis-related genes, namely VEGFA, VEGFB, KDR, CXCL8, CXCR1 and CXCR2 in LGG vs. GBM to identify molecular distinctions using datasets available on The Cancer Genome Atlas (TCGA). Methods: DNA sequencing and mRNA expression data for 514 brain lower grade glioma (LGG) and 592 glioblastoma multiforme (GBM) patients were acquired from The Cancer Genome Atlas (TCGA), and the genetic alterations and expression levels of the selected genes were analyzed. Results: We identified six distinct KDR mutations in the LGG patients and 18 distinct KDR mutations in the GBM patients, including missense and nonsense mutations, frame shift deletion and altered splice region. Furthermore, VEGFA and CXCL8 were significantly overexpressed within GBM patients. Conclusions: VEGFA and CXCL8 are important factors for angiogenesis, which are suggested to have significant roles during tumorigenesis. Our results provide further evidence that VEGFA and CXCL8 could induce angiogenesis and promote LGG to progress into GBM. These findings could be useful in developing novel targeted therapeutics approaches in the future.


2018 ◽  
Vol 20 (11) ◽  
pp. 1505-1516 ◽  
Author(s):  
Lei Zhang ◽  
Liqun He ◽  
Roberta Lugano ◽  
Kenney Roodakker ◽  
Michael Bergqvist ◽  
...  

Abstract Background Vascular gene expression patterns in lower-grade gliomas (LGGs; diffuse World Health Organization [WHO] grades II–III gliomas) have not been thoroughly investigated. The aim of this study was to molecularly characterize LGG vessels and determine if tumor isocitrate dehydrogenase (IDH) mutation status affects vascular phenotype. Methods Gene expression was analyzed using an in-house dataset derived from microdissected vessels and total tumor samples from human glioma in combination with expression data from 289 LGG samples available in the database of The Cancer Genome Atlas. Vascular protein expression was examined by immunohistochemistry in human brain tumor tissue microarrays (TMAs) representing WHO grades II–IV gliomas and nonmalignant brain samples. Regulation of gene expression was examined in primary endothelial cells in vitro. Results Gene expression analysis of WHO grade II glioma indicated an intermediate stage of vascular abnormality, less severe than that of glioblastoma vessels but distinct from normal vessels. Enhanced expression of laminin subunit alpha 4 (LAMA4) and angiopoietin 2 (ANGPT2) in WHO grade II glioma was confirmed by staining of human TMAs. IDH wild-type LGGs displayed a specific angiogenic gene expression signature, including upregulation of ANGPT2 and serpin family H (SERPINH1), connected to enhanced endothelial cell migration and matrix remodeling. Transcription factor analysis indicated increased transforming growth factor beta (TGFβ) and hypoxia signaling in IDH wild-type LGGs. A subset of genes specifically induced in IDH wild-type LGG vessels was upregulated by stimulation of endothelial cells with TGFβ2, vascular endothelial growth factor, or cobalt chloride in vitro. Conclusion IDH wild-type LGG vessels are molecularly distinct from the vasculature of IDH-mutated LGGs. TGFβ and hypoxia-related signaling pathways may be potential targets for anti-angiogenic therapy of IDH wild-type LGG.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii90-iii90
Author(s):  
A E Danyeli ◽  
C B Akyerli ◽  
A Dinçer ◽  
E Coşgun ◽  
U Abacıoğlu ◽  
...  

Abstract BACKGROUND Although the word “glioblastoma” still denotes a grade-IV pathology, basic molecular studies have clearly indicated that a significant proportion of lower-grade gliomas harbor genetic alterations typical of glioblastomas. Based on these findings cIMPACT-NOW update 3 has defined an entity called the “diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. A TERT-promoter mutation is one of these typical molecular markers of glioblastomas. In this study we analyzed IDH-wild type, TERT-mutant diffuse gliomas of different pathological grades to look for differences in demographic, clinical and survival characteristics. MATERIAL AND METHODS 147 adult hemispheric diffuse-gliomas with wild-type IDH1/2 and mutant TERT-promoter (C228T or C250T) were retrospectively analyzed. Primary thalamic, cerebellar brainstem or spinal cases were excluded. 126 (86%), 16(11%) and 5(3%) patients were WHO grade IV, III and II respectively. After surgical treatment or stereotactic biopsy all patients underwent chemoradiation. Median follow-up was 16mo (1–110). Tumors of different grades were compared for age, gender, multifocality, gliomatosis pattern, Ki-67 index, progression-free survival and overall-survival. RESULTS Mean age at presentation for grade II, III and IV were comparable (58.1, 58 and 58.1; ANOVA, p=0.72). There was a slight male predominance in both lower-grades and WHO-grade IV (M:F ratios 1.625 and 1.74). Mean Ki-67 index was significantly higher in higher grades (0.06, 0.14 and 0.25 for grades II, III and IV; ANOVA, p=0.001). Multifocality was comparable (chi-sq, p=1) in lower-grades (3/21; 14.3%) vs. WHO-grade IV (18/126; 14.3%). Gliomatosis pattern was comparable (chi-sq, p=0.095) in lower-grades (2/21; 9.5%) vs. (3/126; 2.3%). Median recurrence free survival (RFS) was 16 months (0–63) in lower-grades and 8months (1–50) in WHO-grade IV. PFS was significantly different between 3 WHO-grades (Log rank, p=0.007) and also between lower-grades and WHO-grade IV (Log rank, p=0.002). Median overall survival was 26 months(2–110) in lower-grades and 15mo(1–91) in WHO-grade IV. OS was significantly different between 3 WHO-grades (Log rank, p=0.014) and also between lower-grades and WHO-grade IV (Log rank, p=0.007). CONCLUSION Increasing pathological grades of hemispheric “IDH-wild type, TERT-mutant diffuse gliomas” have similar demographic and clinical characteristics but incrasing proliferation indices, decrasing progression free survival and shorter overall survival. The findings may be suggesitve of different grades of one common tumor entity.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Yasuharu Akasaki ◽  
Jun Takei ◽  
Yuko Kamata ◽  
Yohei Yamamoto ◽  
Ryosuke Mori ◽  
...  

Abstract BACKGROUND This trial was designed to evaluate the safety and clinical responses to an immunotherapy with fusions of dendritic and glioma cells in patients with lower grade glioma (LGG; WHO grade II-III glioma). METHOD Autologous cultured glioma cells obtained from surgical specimens were fused with autologous dendritic cells (DC) using polyethylene glycol. The fusion cells (FC) were inoculated intradermally in the cervical region of subjects. Toxicity, progression-free survival (PFS), overall survival (OS), and MRI findings were evaluated. DNA for whole exome and RNA for whole transcriptome extracted from HLA-A*24:02 positive glioma cells were analyzed by next generation sequencer. Variant peptides showing strong binding affinity to HLA-A*24:02 but not the corresponding wild type peptides were selected as candidate of neo-antigens. RESULTS The number of subjects of this trial were 24 (initially diagnosed cases: 20, recurrence cases: 4). WHO grade III cases were 20, and grade II cases were 4. Male were 15, and female were 9. Mean of follow up periods were 53.0 months (the longest follow up period: 1322 months). The number of events on PFS and OS were 8 and 6, respectively. Mean of candidate of neo-antigen peptides in HLA-A*24:02 positive patients (n=8) was 34. Among these candidates, twelve types of common neo-antigen peptide were identified. Neo-antigen peptides specifically expressed in the glioma cells from the effective group were not identified. CONCLUSIONS These results indicate that the efficacy of FC-immunotherapy may not always depend on the number of gene mutations or the expression of the specific neo-antigens. FC-immunotherapy, as a means of producing specific immunity against neo-antigens may safely induce anti-tumor effects in patients with LGG. Analysis of prognostic factor in glioma immunotherapy may be the next area of major interest.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii81-iii81
Author(s):  
A F Keßler ◽  
J Weiland ◽  
T Linsenmann ◽  
R Ernestus ◽  
C Hagemann ◽  
...  

Abstract BACKGROUND The addition of Tumor Treating Fields (TTFields) to the first-line therapy in glioblastoma (GBM) demonstrated significantly improved progression free survival, overall survival and longterm survival rates in the EF-14 phase 3 trial. However, responder analysis of patients with recurrent GBM (rGBM) treated with TTFields monotherapy (in the EF-11 trial) revealed delayed response monitored by MRI analysis. More recent data suggests that O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET may add valuable information for monitoring therapy response of glioblastoma patients treated with TTFields. Here, we report on FET PET response in a patient with progressive anaplastic astrocytoma WHO grade III (AA) treated with TTFields in combination with temozolomide (TMZ) chemotherapy. METHODS We present a 38-year old patient with an initial diagnosis of a diffuse astrocytoma WHO grade II in 2011, and malignisation to an AA on progression. The treatment regimen included initially radio-chemotherapy (RCT) with TMZ. On further progression of the AA in 2017, TTFields were added to another 6 cycles of TMZ. Several FET PET scans for differentiation of tumor progression from treatment-related changes were performed over time. The definitive diagnosis (tumor progression and grading) was confirmed by histopathology after stereotactic biopsy (SB). RESULTS In 2012, the patient was first diagnosed with a low grade astrocytoma WHO grade II of the right frontal, temporal and parietal lobe including infiltration of thalamus and corpus was confirmed by SB, followed by irradiation. On progression in 2015, a FET PET Scan showed FET avidity in all tumor affected regions of the brain. SB confirmed an AA, while FET PET scans showed only a mild response in the temporoparietal region after 6 cycles of TMZ. In 2017, the next progression without further malignisation was confirmed by SB and treated RCT with 41.4 Gy and TMZ chemotherapy, followed by application of TTFields with an average usage rate of 85.7 % over 6 months. Thus, the TTFields adherence was well above the independent prognostic threshold of 75 %. No additional adverse events due to the combined therapy of TTFields and TMZ were observed. Due to a new contrast enhancing lesion in the right frontal lobe (10x7mm), another FET PET scan was performed 1.5 years later. In this scan, obtained after combined TTFields and RCT therapy a strong response regarding FET avidity was observed. CONCLUSION In summary, FET PET is able to add important additional information for evaluation of treatment response in high grade glioma patients, in particular for TTFields treated patients, while adding TTFields to radiochemotherapy might even enhance treatment response of high grade glioma. Further studies might elucidate the role of FET PET imaging for therapy monitoring in high grade glioma patients treated with TTFields.


Sign in / Sign up

Export Citation Format

Share Document