scholarly journals HGG-12. HUMAN IPSC-DERIVED H3.3K27M NEUROSPHERES: A NOVEL MODEL FOR INVESTIGATING DIPG PATHOGENESIS AND DRUG RESPONSE

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i19-i20
Author(s):  
Kasey Skinner ◽  
Tomoyuki Koga ◽  
Shunichiro Miki ◽  
Robert F Gruener ◽  
R Stephanie Huang ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is a subset of high-grade glioma that occurs predominantly in children and has no cure. Up to 80% of DIPG harbor a heterozygous point mutation that results in a lysine 27 to methionine substitution in histone variant H3.3 (H3.3K27M). Existing DIPG models have provided insight into the role of H3.3K27M but have limitations: genetically engineered murine models often rely on overexpression of the mutant histone to form tumors; patient-derived xenografts (PDX) are more genetically faithful but preclude examination of the effect of individual mutations on pathogenesis. To address these shortcomings and better recapitulate the genetics of human tumors, we designed a novel DIPG model based on human induced pluripotent stem cells (iPSC) edited via CRISPR to express heterozygous H3.3K27M. Edited iPSC were chemically differentiated into neural progenitor cells, which upon implantation into the brainstems of immunodeficient mice formed diffusely invasive tumors that were histologically consistent with high-grade glioma. Further, neurospheres cultured from primary tumors formed secondary tumors upon reimplantation with more diffuse invasion, suggesting in vivo evolution. To validate this model’s relevance to DIPG transcriptionally, we performed RNA-sequencing on a cohort of primary and secondary tumor neurospheres (termed primary and secondary iDIPG) and compared them to published RNA-seq data from pediatric PDX and patient tumor samples. Hierarchical clustering and principal component analysis on differentially expressed genes (P<0.05) showed that H3.3K27M iDIPG cluster with H3.3K27M PDX and patient tumors. Further, ssGSEA showed that H3.3K27M iDIPG are enriched for astrocytic and mesenchymal signature genes, a defining feature of H3.3K27M DIPG. Finally, we found that primary H3.3K27M iDIPG neurospheres are sensitive to panobinostat, an HDAC inhibitor shown to be effective against H3.3K27M DIPG cells in vitro. Overall, these data suggest that H3.3K27M iDIPG are a promising tool for investigating DIPG biology and new therapeutic strategies.

2022 ◽  
Author(s):  
Zhiyuan Sun ◽  
Yufu Zhu ◽  
Xia Feng ◽  
Xiaoyun Liu ◽  
Kunlin Zhou ◽  
...  

Abstract H3.3K27M is a newly identified molecular pathology marker in glioma and is especially correlated with the malignancy of diffuse intrinsic pontine glioma (DIPG). In recent years, accumulating research has revealed that other types of glioma also contain the H3.3K27M mutation. However, the role of H3.3K27M in high-grade adult glioma, which is the most malignant glioma, has not been investigated. In this study, we focused on exploring the expression and function of H3.3K27M in high-grade adult glioma patients. We found that H3.3K27M is partly highly expressed in high-grade glioma tissues. Then, we introduced H3.3K27M into H3.3 wild-type glioma cells, U87 cells and LN229 cells. We found that H3.3K27M did not regulate the growth of glioma in vitro and in vivo; however, the survival of mice with transplanted tumors was significantly reduced. Further investigation revealed that H3.3K27M expression mainly promoted the migration and invasion of glioma cells. Moreover, we certified that H3.3K27M overexpression enhanced the protein levels of ꞵ-catenin and p-ꞵ-catenin, the protein and mRNA levels of ubiquitin-specific protease 1 (USP1), and the protein level of enhancer of zeste homolog 2 (EZH2). Importantly, the ꞵ-catenin inhibitor XAV-939 significantly attenuated the upregulation of the aforementioned proteins. Overall, the H3.3K27M mutation is present in a certain proportion of high-grade glioma patients and facilitates a poor prognosis by promoting the metastasis of glioma by regulating the ꞵ-catenin/USP1/EZH2 pathway.


2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii76.3-iii76
Author(s):  
Adam Green ◽  
Patrick Flannery ◽  
John DeSisto ◽  
Madeleine Lemieux ◽  
Shak Ramkissoon ◽  
...  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3505-3505
Author(s):  
Olivier Rixe ◽  
John Charles Morris ◽  
Robert Wesolowski ◽  
Emrullah Yilmaz ◽  
Richard Curry ◽  
...  

3505 Background: BXQ-350 is a first-in-class agent comprised of Saposin C (SapC) and dioleoyl phosphatidylserine (DOPS). SapC, a multifunctional lysosomal-activator glycoprotein that preferentially interacts with tumor cell phospholipids, has demonstrated anti-tumor effects in both in vitro and in vivo preclinical models. The tolerability and preliminary efficacy of BXQ-350 in the first-in-human study are summarized here. Methods: Eighty-six refractory solid tumor (ST) or high-grade glioma (HGG) patients age ≥18 (36F:50M, age 24-81) were enrolled in a 3-part first-in-human trial (NCT02859857) from 2016-2019 and received at least one dose of BXQ-350. Doses were administered via intravenous infusion during 28-day cycles until disease progression occurred. The previously reported part 1 dose escalation portion of the study (9 HGG, 9 ST patients) established the highest planned dose of 2.4mg/kg as safe but did not identify a maximum tolerated dose. The part 2 expansion cohort treated 37 patients (18 HGG and 19 ST) and an additional part 3 cohort treated 31 ST gastrointestinal (GI) patients, both at the 2.4 mg/kg dose level. Preliminary antitumor activity was evaluated (RECISTv1.1 or RANO). Results: There were no BXQ-350-related serious adverse events, dose limiting toxicities or withdrawals with the exception of 1 allergic type reaction. Three patients (Glioblastoma, Ependymoma, Appendiceal) demonstrated a partial response per RECIST/RANO. Two HGG patients with progressive radiologic enhancement were seen to have treatment effect at surgery, and hence considered to have stable disease. Seven patients (2 HGG, 3 GI, 2 other ST) remain on study and have received treatment for 9+ to 41+ months, with 5 patients treated for > 1 year. A continuing treatment protocol is planned in order to allow these patients to remain on BXQ-350 treatment. Conclusions: BXQ-350 was well tolerated with no significant dose-limiting toxicities at the highest planed dose level. Preliminary results indicate this novel agent demonstrated possible anti-tumor activity in refractory solid tumors and HGG. Clinical trial information: NCT03967093) .


2021 ◽  
Vol 118 (20) ◽  
pp. e2102404118
Author(s):  
Maelig G. Morvan ◽  
Fernando Teque ◽  
Lin Ye ◽  
Mary E. Moreno ◽  
Jiaming Wang ◽  
...  

Genetic editing of induced pluripotent stem (iPS) cells represents a promising avenue for an HIV cure. However, certain challenges remain before bringing this approach to the clinic. Among them, in vivo engraftment of cells genetically edited in vitro needs to be achieved. In this study, CD34+ cells derived in vitro from iPS cells genetically modified to carry the CCR5Δ32 mutant alleles did not engraft in humanized immunodeficient mice. However, the CD34+ cells isolated from teratomas generated in vivo from these genetically edited iPS cells engrafted in all experiments. These CD34+ cells also gave rise to peripheral blood mononuclear cells in the mice that, when inoculated with HIV in cell culture, were resistant to HIV R5-tropic isolates. This study indicates that teratomas can provide an environment that can help evaluate the engraftment potential of CD34+ cells derived from the genetically modified iPS cells in vitro. The results further confirm the possibility of using genetically engineered iPS cells to derive engraftable hematopoietic stem cells resistant to HIV as an approach toward an HIV cure.


Oncotarget ◽  
2016 ◽  
Vol 7 (17) ◽  
pp. 23416-23424 ◽  
Author(s):  
Yi-Hsien Chen ◽  
Patrick J. Cimino ◽  
Jingqin Luo ◽  
Sonika Dahiya ◽  
David H. Gutmann
Keyword(s):  

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e13508-e13508
Author(s):  
Zachary Miklja ◽  
Brendan Mullan ◽  
Ruby Siada ◽  
Stefanie Stallard ◽  
Viveka Nand Yadav ◽  
...  

e13508 Background: Pediatric and adult high-grade glioma (HGG) frequently harbor PDGFRA alterations. The CNS penetration of PDGFRA inhibitors, such as dasatinib, is limited by the tumor-efflux protein P-glycoprotein (P-gp). We hypothesized that co-treatment with everolimus, which has been shown to block P-gp, will increase CNS penetration and efficacy of dasatinib in in vitro and in vivo models as well as in human PDGFRA-driven glioma. Methods: Tumors were generated in mice using an intra-uterine electroporation (IUE) model [introduction of TP53, PDGFRA and H3K27M mutations in pre-natal cortex]. Dose response, synergism studies, P-GP inhibition and pharmacodynamics/pharmacokinetic studies were then performed on in vitro and in vivo models employing this IUE system. A phase 2 trial employing dasatinib and everolimus was established for children with HGG and diffuse intrinsic pontine glioma (DIPG) that contain PDGFRA alterations (NCT03352427). Paired CSF/plasma samples (before and after addition of everolimus) were collected from enrolled patients. Results: Dasatinib effectively treated mouse HGG cells with an IC50 of 100 nM. Dose-dependent reduction in PDGFRA and pPDGFRA was found. P-gp inhibitor assay confirmed that everolimus strongly blocks P-gp activity at 1 uM (p = 0.0028 vs untreated). Mice treated with dasatinib and everolimus had extended survival as compared to control. Two-hour exposure to everolimus resulted in sub-IC50 dasatinib concentration in cortex (23 nM) and tumor (65 nM). 24-hour exposure to everolimus resulted in greater cortex (235 nM) and tumor (509 nM) concentrations. Two trial patients, recurrent HGG ( PDGFRA-amplified) and recurrent DIPG ( PDGFRA D842V) respectively, survived 6 months and 9 months (ongoing) after progression, which compares very favorably to historical controls. A paired CSF sample from the PDGFRA-amplified patient showed a 50% increase in CSF dasatinib level after addition of everolimus. Conclusions: Dasatinib treatment of PDGFRA-driven HGG is improved with everolimus blockade of P-gp and represents a novel route for improving CNS penetration and efficacy of therapies for HGG. Clinical trial information: NCT03352427.


2020 ◽  
Author(s):  
Cristiana Barone ◽  
Mariachiara Buccarelli ◽  
Francesco Alessandrini ◽  
Miriam Pagin ◽  
Laura Rigoldi ◽  
...  

AbstractCancer stem cells (CSC) are essential for tumorigenesis. The transcription factor Sox2 is overexpressed in brain tumors. In gliomas, Sox2 is essential to maintain CSC. In mouse high-grade glioma pHGG, Sox2 deletion causes cell proliferation arrest and inability to reform tumors in vivo; 134 genes are significantly derepressed. To identify genes mediating the effects of Sox2 deletion, we overexpressed into pHGG cells nine among the most derepressed genes, and identified four genes, Cdkn2b, Ebf1, Zfp423 and Hey2, that strongly reduced cell proliferation in vitro and brain tumorigenesis in vivo. CRISPR/Cas9 mutagenesis, or pharmacological inactivation, of each of these genes, individually, showed that their activity is essential for the proliferation arrest caused by Sox2 deletion. These Sox2-inhibited antioncogenes also inhibited clonogenicity in primary human glioblastoma-derived cancer stem-like cell lines. These experiments identify critical anti-oncogenic factors whose inhibition by Sox2 is involved in CSC maintenance, defining new potential therapeutic targets for gliomas.Table of Contents ImageMain PointsSox2 maintains glioma tumorigenicity by repressing the antioncogenic activity of a regulatory network involving the Ebf1, Hey2, Cdkn2b and Zfp423 genes.Mutation of these genes prevents the cell proliferation arrest of Sox2-deleted glioma cells.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61512 ◽  
Author(s):  
Susanna J. E. Veringa ◽  
Dennis Biesmans ◽  
Dannis G. van Vuurden ◽  
Marc H. A. Jansen ◽  
Laurine E. Wedekind ◽  
...  

2020 ◽  
Author(s):  
Chen He ◽  
Ke Xu ◽  
Xiaoyan Zhu ◽  
Paige S. Dunphy ◽  
Brian Gudenas ◽  
...  

AbstractPediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. We established 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulated histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and included rare subgroups not well-represented by existing models. We deployed 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predicted variable in vivo response to inhibitors of PI3K/mTOR and MEK signaling pathways. These unique new models and an online interactive data portal to enable exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i18-i18
Author(s):  
Shawn Gillespie ◽  
Yoon Kim ◽  
Anna Geraghty ◽  
Pamelyn Woo ◽  
Michelle Monje

Abstract High-grade gliomas, including diffuse intrinsic pontine glioma (DIPG), are a lethal group of cancers whose progression is strongly regulated by neuronal activity {Venkatesh 2015}{Venkatesh 2017}{Venkatesh 2019}. One way in which glioma cells sense neuronal activity is via interaction with the ectodomain of post-synaptic adhesion protein neuroligin-3 (NLGN3), which is cleaved and released into the tumor microenvironment (TME) by the sheddase ADAM10. This interaction drives glioma growth, but the relevant binding partner of shed NLGN3 (sNLGN3) on glioma cells is currently unknown. Here, we report that sNLGN3 binds to chondroitin sulfate proteoglycan 4 (CSPG4), in turn inducing regulated intramembrane proteolysis (RIP) of CSPG4, and initiating a signaling cascade within DIPG cells to promote tumor growth. CSPG4 RIP involves activity-regulated ectodomain shedding by ADAM10 and subsequent gamma secretase-mediated release of the intracellular domain in healthy oligodendroglial precursor cells (OPCs), putative cells of origin for several forms of high-grade glioma {Sakry 2014}{Nayak 2018}. Incubation of high-grade glioma cells or healthy OPCs with recombinant NLGN3 is sufficient to augment ADAM10-mediated ectodomain release of CSPG4 and subsequent gamma secretase-mediated cleavage of the CSPG4 intracellular domain (ICD). Pre-treatment of glioma cells or OPCs with an ADAM10 inhibitor entirely blocks NLGN3-induced CSPG4 shedding. Acute depletion of CSPG4 via CRISPR gene editing renders glioma cells insensitive to the growth-promoting effects of NLGN3 application in vitro. We are now performing experiments to better discern how the CSPG4 ICD regulates signaling consequences downstream of sNLGN3 binding. In addition, we are using surface plasmon resonance to investigate whether the shed ectodomains of NLGN3 and CSPG4 remain in complex or only transiently interact. Altogether, our data form a critical missing link in understanding how glioma cells sense, translate and respond to neuronal activity in the TME and identify a new therapeutic target to disrupt neuron-glioma interactions.


Sign in / Sign up

Export Citation Format

Share Document