scholarly journals NIMG-49. THE ACCURACY EVALUATION OF ARCUATE FASCICULUS OF DIFFUSION TENSOR TRACTOGRAPHY BY FUSION OF REAL SPACE AND VIRTUAL SPACE

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi172-vi172
Author(s):  
Tsukasa Koike ◽  
Taichi Kin ◽  
Yasuhiro Takeda ◽  
Hiroki Uchikawa ◽  
Taketo Shiode ◽  
...  

Abstract PURPOSE Diffusion tensor-based tractography (DTT) is a method to estimate the direction of white matter fibers, but it is difficult to verify the relationship with brain function spatially with high accuracy. We developed a registration method to fuse the real space (brain surface photograph) and preoperative fused 3D image (virtual space) using the landmark method and thin plate spline method. In our previous study, this method was able to achieve highly accurate alignment registration error 0.7±0.1mm (mean±SE) even after brain shift due to craniotomy. In this study, we proposed a method to examine spatial errors of DTT and direct cortical stimulation (DCS) and verify its accuracy. METHODS We included 7 gliomas performed awake surgery. We created the fused three – dimensional image before surgery and acquired the brain surface photograph immediately after craniotomy, then we aligned them using the proposed method. Sites that showed speech arrest by DCS were plotted on the fused image. A circle with a radius of 15 mm centered on the same site was taken as the range over which the current spreads. The surface area of each of the circles was calculated to make it true if there was arcuate fasciculus drawn with DTT in the circle, and false if it did not exist. By using this method, the accuracy of the DTT was verified. RESULT: In 7 cases, speech arrest was shown at 21 DCS plots. The probability of the presence of DTT within the current spread of DCS was 64.4%. CONCLUSION The proposed method indicates that DTT does not necessarily match the DCS results by verification using real space and virtual space. We present some illustrative cases.

2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi184-vi184
Author(s):  
Tsukasa Koike ◽  
Taichi Kin ◽  
Taketo Shiode ◽  
Shunsaku Takayanagi ◽  
Shota Tanaka ◽  
...  

2020 ◽  
Vol 32 (03) ◽  
pp. 2050024
Author(s):  
Sheng-Kai Lin ◽  
Rong-Chin Lo ◽  
Ren-Guey Lee

This study proposes an advanced co-registration method for an integrated high temporal resolution electroencephalography (EEG) and magnetoencephalography (MEG) data. The MEG has a higher accuracy for source localization techniques and spatial resolution by sensing magnetic fields generated by the entire brain using multichannel superconducting quantum interference devices, whereas EEG can record electrical activities from larger cortical surface to detect epilepsy. However, by integrating the two modality tools, we can accurately localize the epileptic activity compared to other non-invasive modalities. Integrating the two modality tools is challenging and important. This study proposes a new algorithm using an extended three-dimensional generalized Hough transform (3D GHT) to co-register the two modality data. The pre-process steps require the locations of EEG electrodes, MEG sensors, head-shape points of subjects and fiducial landmarks. The conventional GHT algorithm is a well-known method used for identifying or locating two 2D images. This study proposes a new co-registration method that extends the 2D GHT algorithm to a 3D GHT algorithm that can automatically co-register 3D image data. It is important to study the prospective brain source activity in bio-signal analysis. Furthermore, the study examines the registration accuracy evaluation by calculating the root mean square of the Euclidean distance of MEG–EEG co-registration data. Several experimental results are used to show that the proposed method for co-registering the two modality data is accurate and efficient. The results demonstrate that the proposed method is feasible, sufficiently automatic, and fast for investigating brain source images.


Author(s):  
D. E. Johnson

Increased specimen penetration; the principle advantage of high voltage microscopy, is accompanied by an increased need to utilize information on three dimensional specimen structure available in the form of two dimensional projections (i.e. micrographs). We are engaged in a program to develop methods which allow the maximum use of information contained in a through tilt series of micrographs to determine three dimensional speciman structure.In general, we are dealing with structures lacking in symmetry and with projections available from only a limited span of angles (±60°). For these reasons, we must make maximum use of any prior information available about the specimen. To do this in the most efficient manner, we have concentrated on iterative, real space methods rather than Fourier methods of reconstruction. The particular iterative algorithm we have developed is given in detail in ref. 3. A block diagram of the complete reconstruction system is shown in fig. 1.


2021 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Sara Kierońska ◽  
Milena Świtońska ◽  
Grzegorz Meder ◽  
Magdalena Piotrowska ◽  
Paweł Sokal

Fiber tractography based on diffuse tensor imaging (DTI) can reveal three-dimensional white matter connectivity of the human brain. Tractography is a non-invasive method of visualizing cerebral white matter structures in vivo, including neural pathways surrounding the ischemic area. DTI may be useful for elucidating alterations in brain connectivity resulting from neuroplasticity after stroke. We present a case of a male patient who developed significant mixed aphasia following ischemic stroke. The patient had been treated by mechanical thrombectomy followed by an early rehabilitation, in conjunction with transcranial direct current stimulation (tDCS). DTI was used to examine the arcuate fasciculus and uncinate fasciculus upon admission and again at three months post-stroke. Results showed an improvement in the patient’s symptoms of aphasia, which was associated with changes in the volume and numbers of tracts in the uncinate fasciculus and the arcuate fasciculus.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiang Wang ◽  
Yong Ge ◽  
Hong-xiang Sun ◽  
Haoran Xue ◽  
Ding Jia ◽  
...  

AbstractCrystalline materials can host topological lattice defects that are robust against local deformations, and such defects can interact in interesting ways with the topological features of the underlying band structure. We design and implement a three dimensional acoustic Weyl metamaterial hosting robust modes bound to a one-dimensional topological lattice defect. The modes are related to topological features of the bulk bands, and carry nonzero orbital angular momentum locked to the direction of propagation. They span a range of axial wavenumbers defined by the projections of two bulk Weyl points to a one-dimensional subspace, in a manner analogous to the formation of Fermi arc surface states. We use acoustic experiments to probe their dispersion relation, orbital angular momentum locked waveguiding, and ability to emit acoustic vortices into free space. These results point to new possibilities for creating and exploiting topological modes in three-dimensional structures through the interplay between band topology in momentum space and topological lattice defects in real space.


1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


2008 ◽  
Vol 30 (4) ◽  
pp. 262-275 ◽  
Author(s):  
Helen D’Arceuil ◽  
Christina Liu ◽  
Pat Levitt ◽  
Barbara Thompson ◽  
Barry Kosofsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document