Reliability of Using the Proposed International Consensus Video Signs of Potential Concussion for National Rugby League Head Impact Events

Neurosurgery ◽  
2021 ◽  
Vol 89 (Supplement_2) ◽  
pp. S100-S100
Author(s):  
Andrew J Gardner
Neurosurgery ◽  
2020 ◽  
Author(s):  
Andrew J Gardner

Abstract BACKGROUND Consensus on the definition of extant video signs of concussion have recently been proposed by representatives of international sporting codes for global consistency across professional leagues. OBJECTIVE To review the reliability of the proposed international consensus video signs of concussion in National Rugby League (NRL) head impact events (HIEs). METHODS The video signs of concussion were coded for every HIE during the 2019 NRL season. Coding was conducted blinded to the concussion status. Frequency, sensitivity, specificity, and a receiver operating characteristic curve were calculated. RESULTS There were 943 HIEs identified over the 2019 NRL season, of which 106 resulted in a diagnosed concussion. The most frequently observed video sign in concussed athletes was blank/vacant look (54%), which was also the most sensitive video sign (0.54, CI: 0.44-0.63), while the most specific was tonic posturing (0.99, CI: 0.99-1.00). In 43.4% of diagnosed concussions none of the 6 video signs were present. The 6 video signs demonstrated a “fair” ability to discriminate between concussion and nonconcussion HIEs (area under the curve = 0.76). CONCLUSION International consensus agreement between collision sports for extant video signs of concussion and the definition of those extant video signs are clinically important. The selection of signs requires rigorous assessment to examine their predictive value across all sports and within individual sports, and to determine further video signs to compliment and improve the identification of possible concussion events within various sports. The current study demonstrated that, for NRL-related HIEs, the diagnostic accuracy of video signs varies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Grant L. Iverson ◽  
Ryan Van Patten ◽  
Andrew J. Gardner

Objective: To examine the relationship between video-identified onfield motor incoordination, the acute assessment of concussion, and recovery time during three seasons of National Rugby League (NRL) play.Methods: Blows to the head (“head impact events”) were recorded by sideline video operators and medical staff. Any player with a suspected concussion underwent a Head Injury Assessment in which he was taken off the field and medically evaluated, including the administration of the Sports Concussion Assessment Tool, 5th Edition (SCAT5). Video footage was later examined to determine the presence or absence of onfield motor incoordination following the head impact event.Results: Motor incoordination was identified in 100/1,706 head impact events (5.9%); 65 of the 100 instances of motor incoordination (65.0%) were ultimately medically diagnosed with a concussion. In 646 athletes for whom SCAT5 data were available, those with motor incoordination were more likely to report both dizziness and balance problems than those without motor incoordination, but there were no group differences on an objective balance test. Additionally, there was no relationship between presence/absence of motor incoordination and number of games missed or time to medical clearance for match play.Conclusion: In NRL players, motor incoordination is a readily observable onfield sign that is strongly associated with a medical diagnosis of concussion and with self-reported dizziness/balance problems. However, onfield motor incoordination is not associated with objective balance performance and it is not predictive of time to recover following concussion.


2012 ◽  
Vol 117 (6) ◽  
pp. 1092-1099 ◽  
Author(s):  
Ann-Christine Duhaime ◽  
Jonathan G. Beckwith ◽  
Arthur C. Maerlender ◽  
Thomas W. McAllister ◽  
Joseph J. Crisco ◽  
...  

Object Concussive head injuries have received much attention in the medical and public arenas, as concerns have been raised about the potential short- and long-term consequences of injuries sustained in sports and other activities. While many student athletes have required evaluation after concussion, the exact definition of concussion has varied among disciplines and over time. The authors used data gathered as part of a multiinstitutional longitudinal study of the biomechanics of head impacts in helmeted collegiate athletes to characterize what signs, symptoms, and clinical histories were used to designate players as having sustained concussions. Methods Players on 3 college football teams and 4 ice hockey teams (male and female) wore helmets instrumented with Head Impact Telemetry (HIT) technology during practices and games over 2–4 seasons of play. Preseason clinical screening batteries assessed baseline cognition and reported symptoms. If a concussion was diagnosed by the team medical staff, basic descriptive information was collected at presentation, and concussed players were reevaluated serially. The specific symptoms or findings associated with the diagnosis of acute concussion, relation to specific impact events, timing of symptom onset and diagnosis, and recorded biomechanical parameters were analyzed. Results Data were collected from 450 athletes with 486,594 recorded head impacts. Forty-eight separate concussions were diagnosed in 44 individual players. Mental clouding, headache, and dizziness were the most common presenting symptoms. Thirty-one diagnosed cases were associated with an identified impact event; in 17 cases no specific impact event was identified. Onset of symptoms was immediate in 24 players, delayed in 11, and unspecified in 13. In 8 cases the diagnosis was made immediately after a head impact, but in most cases the diagnosis was delayed (median 17 hours). One diagnosed concussion involved a 30-second loss of consciousness; all other players retained alertness. Most diagnoses were based on self-reported symptoms. The mean peak angular and rotational acceleration values for those cases associated with a specific identified impact were 86.1 ± 42.6g (range 16.5–177.9g) and 3620 ± 2166 rad/sec2 (range 183–7589 rad/sec2), respectively. Conclusions Approximately two-thirds of diagnosed concussions were associated with a specific contact event. Half of all players diagnosed with concussions had delayed or unclear timing of onset of symptoms. Most had no externally observed findings. Diagnosis was usually based on a range of self-reported symptoms after a variable delay. Accelerations clustered in the higher percentiles for all impact events, but encompassed a wide range. These data highlight the heterogeneity of criteria for concussion diagnosis, and in this sports context, its heavy reliance on self-reported symptoms. More specific and standardized definitions of clinical and objective correlates of a “concussion spectrum” may be needed in future research efforts, as well as in the clinical diagnostic arena.


Author(s):  
Hamid M. Lankarani ◽  
C. S. Koshy ◽  
C. K. Thorbole

The compliance with Head Injury Criteria (HIC) specified in 14 CFR 23.562 [1] and CFR 25.562 [2] poses a significant problem for many segments of the aerospace industry. The airlines and the manufacturers of jet transports have made claims of high costs and significant schedule overruns during the development and certification of 16G seats because of the difficulties encountered in meeting this requirement. The current practice is to conduct Full Scale Sled Tests (FSST) on impact sleds. This approach can be expensive, since a new seat may be needed for each test. Moreover, some consider the HIC sensitive to changes in the test conditions, such as sled pulse, seat belt elongation, etc., resulting in HIC results from FSSTs showing poor repeatability. These difficulties make it desirable to devise a cheaper, faster, and more repeatable alternative to FSSTs. This paper describes an attempt to address these issues by designing a device, the National Institute for Aviation Research (NIAR) HIC Component Tester (NHCT) using various multibody tools. This device was then fabricated and its performance evaluated against FSSTs conducted under similar test conditions for some typical impact events that occur in an aircraft cabins e.g. impact with bulkheads. The factors compared for this evaluation are the head impact angle, head impact velocity, HIC, HIC window, peak head C.G. resultant acceleration, average head C.G. resultant acceleration, and head C.G. resultant acceleration profiles. The results of these evaluations show that the NHCT already produces test results that correlate significantly with FSST results for impact targets such as bulkheads and its target envelope is expected eventually to include objects such as seat backs.


Neurology ◽  
2020 ◽  
Vol 95 (20 Supplement 1) ◽  
pp. S1.1-S1
Author(s):  
Abigail Swenson ◽  
Logan Miller ◽  
Jillian Urban ◽  
Joel Stitzel

ObjectiveThe objective of this pilot study was to characterize head impact exposure in a sample of youth boys' ice hockey using a novel instrumented mouthpiece, improving accuracy.BackgroundFrom 2010 to 2018 youth ice hockey saw a 15% increase in participation, despite growing concerns for concussion risk in contact sports. While contact sports with similar rates of concussion have been subjected to rigorous study, head impact exposure in youth ice hockey has been largely underexplored. Existing youth studies have utilized helmet-mounted sensors, which are associated with error due to poor coupling with the skull.Design/MethodsCustom mouthpieces containing a tri-axial accelerometer and gyroscope were fit to seven enrolled athletes, and monitored during practices and games throughout the season. Linear acceleration and rotational velocity of the head were recorded for 60 ms when 5 g was exceeded on any axis for at least 3 ms. Time-synchronized film was reviewed to identify the contact scenario and head contact. Summary statistics of kinematics were calculated by scenario and presence of head contact.ResultsA total of 465 events were recorded over 25 weeks. Of these events 25% involved head contact; 92% of all contact scenarios were board checks, falls, or ice checks. Events involving head contact (i.e., head impacts) had median [95th percentile] peak linear acceleration, rotational velocity, and angular acceleration of 8.1 [30.9] g, 7.9 [20.2] rad/s, and 614 [2673] rad/s2, respectively. Events not involving head contact had median [95th percentile] peak linear acceleration, rotational velocity, and angular acceleration of 6.6 [43.8] g, 6.5 [17.5] rad/s, and 455 [4115] rad/s2, respectively.ConclusionsThe majority of the recorded events could be classified as board checks, falls, or ice checks. Median peak kinematics were higher for head impacts than non-head impact events. In contrast, 95th percentile linear and angular accelerations were greater for impacts not involving head contact.


Brain Injury ◽  
2016 ◽  
Vol 30 (11) ◽  
pp. 1350-1361 ◽  
Author(s):  
Gregory J. Tierney ◽  
John Lawler ◽  
Karl Denvir ◽  
Kurt McQuilkin ◽  
Ciaran K. Simms

2020 ◽  
Vol 48 (5) ◽  
pp. 1246-1253 ◽  
Author(s):  
Declan A. Patton ◽  
Colin M. Huber ◽  
Catherine C. McDonald ◽  
Susan S. Margulies ◽  
Christina L. Master ◽  
...  

Background: Recent advances in technology have enabled the development of head impact sensors, which provide a unique opportunity for sports medicine researchers to study head kinematics in contact sports. Studies have suggested that video or observer confirmation of head impact sensor data is required to remove false positives. In addition, manufacturer filtering algorithms may be ineffective in identifying true positives and removing true negatives. Purpose: To (1) identify the percentage of video-confirmed events recorded by headband-mounted sensors in high school soccer through video analysis, overall and by sex; (2) compare video-confirmed events with the classification by the manufacturer filtering algorithms; and (3) quantify and compare the kinematics of true- and false-positive events. Study Design: Cohort study; Level of evidence, 2. Methods: Adolescent female and male soccer teams were instrumented with headband-mounted impact sensors (SIM-G; Triax Technologies) during games over 2 seasons of suburban high school competition. Sensor data were sequentially reduced to remove events recorded outside of game times, associated with players not on the pitch (ie, field) and players outside the field of view of the camera. With video analysis, the remaining sensor-recorded events were identified as an impact event, trivial event, or nonevent. The mechanisms of impact events were identified. The classifications of sensor-recorded events by the SIM-G algorithm were analyzed. Results: A total of 6796 sensor events were recorded during scheduled varsity game times, of which 1893 (20%) were sensor-recorded events associated with players on the pitch in the field of view of the camera during verified game times. Most video-confirmed events were impact events (n = 1316, 70%), followed by trivial events (n = 396, 21%) and nonevents (n = 181, 10%). Female athletes had a significantly higher percentage of trivial events and nonevents with a significantly lower percentage of impact events. Most impact events were head-to-ball impacts (n = 1032, 78%), followed by player contact (n = 144, 11%) and falls (n = 129, 10%) with no significant differences between male and female teams. The SIM-G algorithm correctly identified 70%, 52%, and 66% of video-confirmed impact events, trivial events, and nonevents, respectively. Conclusion: Video confirmation is critical to the processing of head impact sensor data. Percentages of video-confirmed impact events, trivial events, and nonevents vary by sex in high school soccer. Current manufacturer filtering algorithms and magnitude thresholds are ineffective at correctly classifying sensor-recorded events and should be used with caution.


2017 ◽  
Vol 45 (10) ◽  
pp. 2379-2387 ◽  
Author(s):  
Nelson Cortes ◽  
Andrew E. Lincoln ◽  
Gregory D. Myer ◽  
Lisa Hepburn ◽  
Michael Higgins ◽  
...  

Background: Wearable sensors are increasingly used to quantify the frequency and magnitude of head impact events in multiple sports. There is a paucity of evidence that verifies head impact events recorded by wearable sensors. Purpose: To utilize video analysis to verify head impact events recorded by wearable sensors and describe the respective frequency and magnitude. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Thirty male (mean age, 16.6 ± 1.2 years; mean height, 1.77 ± 0.06 m; mean weight, 73.4 ± 12.2 kg) and 35 female (mean age, 16.2 ± 1.3 years; mean height, 1.66 ± 0.05 m; mean weight, 61.2 ± 6.4 kg) players volunteered to participate in this study during the 2014 and 2015 lacrosse seasons. Participants were instrumented with GForceTracker (GFT; boys) and X-Patch sensors (girls). Simultaneous game video was recorded by a trained videographer using a single camera located at the highest midfield location. One-third of the field was framed and panned to follow the ball during games. Videographic and accelerometer data were time synchronized. Head impact counts were compared with video recordings and were deemed valid if (1) the linear acceleration was ≥20 g, (2) the player was identified on the field, (3) the player was in camera view, and (4) the head impact mechanism could be clearly identified. Descriptive statistics of peak linear acceleration (PLA) and peak rotational velocity (PRV) for all verified head impacts ≥20 g were calculated. Results: For the boys, a total recorded 1063 impacts (2014: n = 545; 2015: n = 518) were logged by the GFT between game start and end times (mean PLA, 46 ± 31 g; mean PRV, 1093 ± 661 deg/s) during 368 player-games. Of these impacts, 690 were verified via video analysis (65%; mean PLA, 48 ± 34 g; mean PRV, 1242 ± 617 deg/s). The X-Patch sensors, worn by the girls, recorded a total 180 impacts during the course of the games, and 58 (2014: n = 33; 2015: n = 25) were verified via video analysis (32%; mean PLA, 39 ± 21 g; mean PRV, 1664 ± 619 rad/s). Conclusion: The current data indicate that existing wearable sensor technologies may substantially overestimate head impact events. Further, while the wearable sensors always estimated a head impact location, only 48% of the impacts were a result of direct contact to the head as characterized on video. Using wearable sensors and video to verify head impacts may decrease the inclusion of false-positive impacts during game activity in the analysis.


2018 ◽  
Vol 21 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Doug A. King ◽  
Patria A. Hume ◽  
Conor Gissane ◽  
David C. Kieser ◽  
Trevor N. Clark
Keyword(s):  

2019 ◽  
Vol 53 (20) ◽  
pp. 1264-1267 ◽  
Author(s):  
Gavin A Davis ◽  
Michael Makdissi ◽  
Paul Bloomfield ◽  
Patrick Clifton ◽  
Ruben J Echemendia ◽  
...  

BackgroundThe use of video to assist professional sporting bodies with the diagnosis of sport-related concussion (SRC) has been well established; however, there has been little consistency across sporting codes with regards to which video signs should be used, and the definitions of each of these signs.AimThe aims of this study were to develop a consensus for the video signs considered to be most useful in the identification of a possible SRC and to develop a consensus definition for each of these video signs across the sporting codes.MethodsA brief questionnaire was used to assess which video signs were considered to be most useful in the identification of a possible concussion. Consensus was defined as >90% agreement by respondents. Existing definitions of these video signs from individual sports were collated, and individual components of the definitions were assessed and ranked. A modified Delphi approach was then used to create a consensus definition for each of the video signs.ResultsRespondents representing seven sporting bodies (Australian Football League, Cricket Australia, Major League Baseball, NFL, NHL, National Rugby League, World Rugby) reached consensus on eight video signs of concussion. Thirteen representatives from the seven professional sports ranked the definition components. Consolidation and refinement of the video signs and their definitions resulted in consensus definitions for six video signs of possible concussion: lying motionless, motor incoordination, impact seizure, tonic posturing, no protective action—floppy and blank/vacant look.ConclusionsThese video signs and definitions have reached international consensus, are indicated for use by professional sporting bodies and will form the basis for further collaborative research.


Sign in / Sign up

Export Citation Format

Share Document