scholarly journals BIMG-02. IMAGING IMMORTALITY: TERT EXPRESSION ALTERS GLUCOSE METABOLISM IN LOW-GRADE GLIOMAS IN A MANNER THAT CAN BE LEVERAGED FOR NONINVASIVE METABOLIC IMAGING

2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i1-i1
Author(s):  
Pavithra Viswanath ◽  
Georgios Batsios ◽  
Anne Marie Gillespie ◽  
Hema Artee Luchman ◽  
Joseph Costello ◽  
...  

Abstract Telomerase reverse transcriptase (TERT) is essential for tumor immortality and uncontrolled proliferation, including in low-grade oligodendrogliomas (LGOGs). Since it is silenced in somatic cells, TERT is also a therapeutic target. Non-invasive imaging of TERT can differentiate tumor from normal brain or lesions such as gliosis and allow assessment of response to therapy. The goal of this study was to identify magnetic resonance spectroscopy (MRS)-detectable metabolic alterations associated with TERT that can be leveraged for noninvasive imaging in LGOGs. We examined patient-derived BT54 neurospheres in which TERT expression was silenced by RNA interference. 1H-MRS showed that steady-state levels of NAD(P)/H, glutathione, aspartate and AXP were elevated in BT54TERT+ neurospheres relative to BT54TERT-. Glucose flux through the pentose phosphate pathway (PPP) is essential for generating NADPH, which maintains glutathione homeostasis. 13C-MRS confirmed that [2-13C]-glucose flux through the PPP was elevated in BT54TERT+ neurospheres relative to BT54TERT-, an effect associated with higher activity of the PPP enzyme glucose-6-phosphate dehydrogenase (G6PDH). Hyperpolarized 13C-MRS is a method of increasing the signal to noise ratio of 13C-MRS such that it can monitor metabolic fluxes noninvasively in cells, animals and patients. Consistent with elevated PPP flux and G6PDH activity, hyperpolarized [U-13C]-glucose metabolism via the PPP to 6-phosphogluconate (6-PG) was elevated in BT54TERT+ neurospheres relative to BT54TERT-. Importantly, examination of an additional patient-derived LGOG model, the SF10417 model which readily forms orthotopic tumor xenografts in rats, showed that 6-PG production from hyperpolarized [U-13C]-glucose demarcated tumor from normal brain. Furthermore, LGOG patient biopsies had elevated NAD(P)/H, glutathione, aspartate, AXP and G6PDH activity relative to gliosis biopsies, confirming the clinical validity of our observations. Collectively, we have identified a metabolic signature of TERT expression that can be leveraged via hyperpolarized [U-13C]-glucose to improve diagnosis and treatment response monitoring for LGOG patients.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi42-vi42
Author(s):  
Pavithra Viswanath ◽  
Georgios Batsios ◽  
Anne Marie Gillespie ◽  
Russell O Pieper ◽  
Sabrina Ronen

Abstract Telomerase reverse transcriptase (TERT) expression is a hallmark of cancer, including in primary glioblastomas and low-grade oligodendrogliomas. Since TERT is essential for glioma proliferation and is an attractive therapeutic target, metabolic imaging of TERT status can inform on tumor progression and response to therapy. To that end, the goal of this study was to identify non-invasive, translational, hyperpolarized 13C-magnetic resonance spectroscopy-detectable metabolic imaging biomarkers of TERT in low-grade oligodendrogliomas. Unbiased metabolomic analysis of immortalized normal human astrocytes without (NHAcontrol) and with TERT (NHAtert) indicated that TERT induced unique metabolic reprogramming. Notably, TERT increased NADPH and NADH levels. Glucose flux through the pentose phosphate pathway (PPP) is a major producer of NADPH. Non-invasive imaging of PPP flux using hyperpolarized [U-13C,U-2H]-glucose indicated that production of the PPP metabolite 6-phosphogluconate (6-PG) was elevated in NHAtert cells relative to NHAcontrol. Importantly, hyperpolarized [U-13C,U-2H]-glucose flux to 6-PG clearly differentiated tumor from normal brain in orthotopic NHAtert tumor xenografts. Next, we exploited the observation that TERT expression increased NADH, which is essential for the metabolism of hyperpolarized [1-13C]-alanine to lactate. Lactate production from hyperpolarized [1-13C]-alanine was higher in NHAtert cells relative to NHAcontrol. Importantly, hyperpolarized [1-13C]-alanine imaging in orthotopic NHAtert tumors revealed pronounced differences in lactate production between tumor tissue and normal brain. Mechanistically, TERT increased expression of glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme for 6-PG and NADPH production, and of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme for NADH biosynthesis. Silencing TERT reversed G6PDH and NAMPT expression and normalized hyperpolarized [U-13C,U-2H]-glucose and [1-13C]-alanine metabolism, validating our imaging biomarkers. Finally, hyperpolarized [U-13C,U-2H]-glucose and [1-13C]-alanine could monitor TERT status in the clinically relevant, patient-derived BT54 oligodendroglioma model. In summary, we demonstrate, for the first time, non-invasive in vivo imaging of TERT status in gliomas that can enable longitudinal analysis of tumor burden and treatment response in the clinic.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi140-vi141
Author(s):  
Georgios Batsios ◽  
Céline Taglang ◽  
Meryssa Tran ◽  
Anne Marie Gillespie ◽  
Sabrina Ronen ◽  
...  

Abstract Telomere maintenance is essential for tumor immortality and sustained tumor proliferation. Most tumors, including high-grade glioblastomas and low-grade oligodendrogliomas achieve telomere maintenance via reactivation of the expression of telomerase reverse transcriptase (TERT), which is silenced in normal somatic cells. Due to this essential role, TERT is a therapeutic target and TERT inhibitors such as 6-thio-2’-deoxyguanosine are in clinical trials. Non-invasive methods of imaging TERT, therefore, have the potential to provide a readout of tumor proliferation and response to therapy. We previously showed that TERT expression is associated with elevated levels of NADH in gliomas. Since NADH is essential for the conversion of pyruvate to lactate, measuring pyruvate flux to lactate could be useful for imaging TERT expression. In this context, deuterium magnetic resonance spectroscopy (2H-MRS) recently emerged as a novel, clinically translatable method of monitoring metabolic fluxes. The goal of this study was to assess the potential of [U-2H]pyruvate for non-invasive imaging of TERT status in gliomas. Following intravenous injection of [U-2H]pyruvate, lactate production was significantly higher in mice bearing orthotopic oligodendroglioma (SF10417, BT88) or glioblastoma (GBM1, GBM6) tumors relative to tumor-free controls. 2D chemical shift imaging showed localization of lactate production to tumor vs. contralateral normal brain. Importantly, following treatment of mice bearing orthotopic GBM6 or BT88 tumors with the TERT inhibitor 6-thio-2’-deoxyguanosine, lactate production from [U-2H]pyruvate was significantly reduced at early timepoints when alterations in tumor volume could not be detected by anatomical imaging, pointing to the ability of [U-2H]pyruvate to report on pseudoprogression. Collectively, we have, for the first time, demonstrated the utility of [U-2H]pyruvate for metabolic imaging of brain tumor burden and treatment response in vivo. Importantly, since 2H-MRS can be implemented on clinical scanners, our results provide a novel, non-invasive method of integrating information regarding a fundamental tumor hallmark, i.e. TERT, into glioma patient management.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi86-vi86 ◽  
Author(s):  
Elavarasan Subramani ◽  
Chloe Najac ◽  
Georgios Batsios ◽  
Pavithra Viswanath ◽  
Marina Radoul ◽  
...  

Abstract Low-grade gliomas, driven by mutations in the cytosolic isocitrate dehydrogenase 1 (IDH1) gene, are less aggressive than primary glioblastoma, but nonetheless always recur and ultimately lead to patient death. The treatment of IDH1 mutant patients with Temozolomide (TMZ) improves survival, but there remains a need for complementary imaging methods to assess response to therapy at an early time point. The goal of this study was, therefore, to determine the value of magnetic resonance spectroscopy (MRS)-based metabolic imaging biomarkers for detection of response to treatment. To this end we investigated NHA and U87 cells expressing IDH1 R132H mutant gene (NHAIDHmut and U87IDHmut) and first used 1H MRS combined with chemometrics to examined the metabolic alterations that occurred following treatment with the IC50 value of TMZ. We observed a significant increase in 2-hydroxyglutarate (2-HG), glutamate, and glutamine, and metabolic pathway analysis showed tricarboxylic acid (TCA) cycle and pyruvate metabolism to be significantly altered pathways following TMZ treatment compared to DMSO control. To confirm changes in TCA cycle flux and to assess the metabolic pathways contributing to the increase in 2-HG and glutamate/glutamine, cells were then labelled with [1-13C] glucose and [3-13C] glutamine. Our data indicated that both glucose flux via the TCA to glutamate and 2HG, and the contribution of glutamine to glutamate and 2HG were increased following TMZ treatment. Finally, we used hyperpolarized 13C-MRS to dynamically probe the metabolism of hyperpolarized [2-13C] pyruvate and its conversion to hyperpolarized [5-13C] glutamate via the TCA cycle. Consistent with our previous findings, we observed that hyperpolarized [5-13C] glutamate synthesis was significantly higher in TMZ-treated cells compared to controls. Collectively, our findings identify 1H MRS-detectable elevation of 2-HG and glutamate/glutamine as well as hyperpolarized 13C-MRS-detectable [5-13C] glutamate production from [2-13C] pyruvate as potentially translatable metabolic biomarkers of response to TMZ therapy in mutant IDH1 glioma.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi34-vi34
Author(s):  
Georgios Batsios ◽  
Pavithra Viswanath ◽  
Peng Cao ◽  
Celine Taglang ◽  
Elavarasan Subramani ◽  
...  

Abstract The pentose phosphate pathway (PPP) generates NADPH and ribose 5-phosphate, which are involved in the scavenging of reactive oxygen species and the synthesis of nucleotides. As such, the PPP is typically upregulated in cancer cells to address the metabolic needs of rapid cell proliferation. Imaging PPP upregulation could therefore be useful in tumor assessment. One intermediate of the pathway is 6-phospho-δ-gluconolactone (6P-δ-GL), which is produced by phosphorylation of δ-gluconolactone. 6P-δ-GL is further metabolized to 6-phospho-gluconate (6PG). The goal of our study was to evaluate, for the first time, whether hyperpolarized (HP) δ-[1-13C]gluconolactone can be used to assess PPP flux and detect the presence of tumor in an orthotopic glioma rat model. Athymic nude rats bearing orthotropic U87 tumors or age-matched tumor-free controls were investigated. HP studies were performed following intravenous injection of HP δ-[1-13C]gluconolactone and metabolic images using a flyback spectral-spatial echo-planar spectroscopic imaging pulse were acquired. The data were processed using in-house Matlab code. 6P-δ-GL and 6-phospho-γ-[1-13C]gluconolactone were observed in all rats ~10 seconds after HP δ-[1-13C]gluconolactone injection, followed ~5 seconds later by production of 6PG observed at 179.3ppm. These data indicate that HP δ-[1-13C]gluconolactone likely crosses the blood-brain barrier, consistent with its transport via glucose transporters, and is rapidly metabolized. Importantly, 6PG was significantly higher in tumor voxels. The ratio of 6PG-to-6P-δ-GL was comparable in normal brain and in normal-appearing contralateral brain of tumor-bearing rats at 0.43±0.09 and 0.45±0.06 respectively (p=0.85), but significant higher in the tumor regions at 0.70±0.11 (p=0.04 and p=0.02 respectively), consistent with the elevated PPP flux that typically occurs in tumor cells. Our results indicate, to our knowledge for the first time, that metabolism of HP δ-[1-13C]gluconolactone can be assessed in the brain and that elevated 6PG production in glioma provides a potential metabolic imaging approach to probe tumor development, recurrence and response to therapy.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i20-i20
Author(s):  
Georgios Batsios ◽  
Pavithra Viswanath ◽  
Celine Taglang ◽  
Robert Flavell ◽  
Joseph Costello ◽  
...  

Abstract Telomerase reverse transcriptase (TERT) expression is essential for tumor proliferation and is an attractive therapeutic target for gliomas. TERT expression has previously been shown to enhance glucose flux via the pentose phosphate pathway (PPP) in low grade gliomas expressing TERT. Hyperpolarized δ-[1-13C]gluconolactone has been used to detect flux via the PPP by monitoring its conversion to 6-phospho-[1-13C]gluconate (6PG) in isolated perfused liver. The goal of our study was to evaluate whether hyperpolarized δ-[1-13C]gluconolactone can be used to monitor elevated PPP flux induced by TERT expression in low grade gliomas, thereby providing a non-invasive method of assessing TERT expression in vivo. Immortalized normal human astrocytes without (NHApre) and with TERT expression (NHApost) were used in cell bioreactor experiments. In vivo experiment with rats bearing orthotopic NHApost or patient-derived low-grade oligodendroglioma (SF10417) tumors were contacted. Dynamic 13C MR spectra were acquired at 14T (cells) or 3T (rats) following injection of hyperpolarized δ-[1-13C]gluconolactone. NHApost cells showed significantly higher flux through the PPP compared to NHApre. This finding was in agreement with previous results indicating that TERT expression elevates PPP flux. In all rats δ-[1-13C]gluconolactone and 6PG were observed indicating that δ-[1-13C]gluconolactone crosses the blood-brain barrier and is rapidly metabolized. Furthermore, both models presented homogeneous distribution of δ-[1-13C]gluconolactone in the brain and higher ratio of 6PG-to-δ-[1-13C]gluconolactone in the tumor area. In summary we show in vivo that hyperpolarized δ-[1-13C]gluconolactone metabolism to 6-phospho-[1-13C]gluconate is significantly higher in tumor compared to contralateral normal brain in TERT-expressing genetically-engineered and patient-derived low-grade oligodendrogliomas. Due to its fundamental role in tumor proliferation, TERT is both a tumor biomarker and a therapeutic target. Monitoring HP δ-[1-13C]gluconolactone metabolism, therefore, has the potential to inform on tumor burden and response to therapy in the clinic.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i5-i5
Author(s):  
Zachary Corbin ◽  
Robert Fulbright ◽  
Douglas Rothman ◽  
Robin de Graaf ◽  
Henk De Feyter

Abstract Deuterium Metabolic Imaging (DMI) combines 3D deuterium (2H) magnetic resonance spectroscopic imaging (MRSI) with administration of a 2H-labeled substrate to map uptake and metabolism of the substrate. DMI has been implemented on a 4 Tesla clinical research MRI scanner, and on an 11.7 Tesla preclinical MRI scanner, and has been used with 2H-labeled glucose, acetate and choline. DMI data are presented as color maps of concentration of the 2H-labeled substrate and its metabolites, overlaid on anatomical MR images. In rat and mouse models of glioblastoma, DMI data acquired at 5 to 8 uL resolution following intravenous 2H-glucose infusion clearly showed the Warburg effect in the tumor lesions. The Warburg effect is indicated by the ratio of 2H-labeled lactate/glutamate+glutamine (Glx). High levels of 2H-labeled lactate and low levels of 2H-labeled Glx are the result of a high rate of glycolysis and low rate of oxidative glucose metabolism. Because DMI detects both glucose and its downstream metabolism, the technique does not suffer from low image contrast with normal brain, as is the case with FDG-PET that detects glucose uptake only. For clinical research studies patients orally consumed 0.75g/kg of 2H-glucose dissolved in water. The observations made in the animal models were confirmed in several patients with recurrent GBM, showing hotspots in the lac/Glx maps (8 mL resolution), coinciding with the area of the tumor lesion. In patients with meningioma, no Warburg effect was detected using DMI. Furthermore, DMI data acquired in a patient with GBM one week after finishing 30 days of radiation therapy, also showed no high levels of 2H-labeled lactate in the lesion. These data indicate that the presence of the Warburg effect could correlate with tumor grade and/or aggressiveness, and that DMI of glucose metabolism could potentially be a biomarker of therapy effect.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi140-vi140
Author(s):  
Céline Taglang ◽  
Georgios Batsios ◽  
Joydeep Mukherjee ◽  
Meryssa Tran ◽  
Anne Marie Gillespie ◽  
...  

Abstract Glioma patient management relies heavily on magnetic resonance imaging (MRI). However, MRI is often inadequate for assessment of tumor burden and pseudoprogression. Non-invasive methods that report on molecular pathways such as telomere maintenance that drive tumor proliferation are needed. Among brain tumors, low-grade astrocytomas (LGAs) use the alternative lengthening of telomeres (ALT) pathway for telomere maintenance. The goal of this study was to identify ALT-linked metabolic alterations that can be exploited for non-invasive magnetic resonance spectroscopy (MRS)-based imaging of LGAs. We examined the patient-derived BT257 model and compared neurospheres that are ALT-dependent (BT257 ALT+) with those in which the ALT pathway has been silenced (BT257 ALT-). Our studies suggest that expression and activity of the rate-limiting glycolytic enzyme phosphofructokinase-1 are significantly higher in BT257 ALT+ neurospheres relative to ALT-, an effect that is associated with elevated glucose flux to lactate. Studies indicate that poly(ADP-ribose) polymerase inhibitors such as niraparib selectively induce telomeric fusion and cell death in ALT-dependent cells. We find that the telomeric fusion-mediated cytotoxicity of niraparib is associated with significantly reduced glycolytic flux in BT257 ALT+ neurospheres. We then examined whether 2H-MRS using [6,6’-2H]-glucose, which is a clinically translatable method of imaging glycolytic flux, can be used to monitor the ALT pathway in vivo. [6,6’-2H]-glucose flux to lactate is elevated in tumor relative to normal brain in mice bearing orthotopic BT257 tumors. Importantly, following treatment of BT257 tumor-bearing mice with niraparib, lactate production from [6,6’-2H]-glucose is significantly reduced at early timepoints when alterations in tumor volume cannot be observed by MRI, pointing to the ability of [6,6’-2H]-glucose to report on pseudoprogression in vivo. Collectively, our studies mechanistically link the ALT pathway with elevated glycolytic flux via phosphofructokinase-1 and identify deuterium metabolic imaging as a novel, non-invasive method of imaging tumor burden and treatment response in LGAs in vivo.


2021 ◽  
Author(s):  
Georgios Batsios ◽  
Celine Taglang ◽  
Meryssa Tran ◽  
Nicholas Stevers ◽  
Carter Barger ◽  
...  

Telomerase reverse transcriptase (TERT) expression is indispensable for tumor immortality. Non-invasive methods of imaging TERT can, therefore, report on tumor proliferation and response to therapy. Here, we show that TERT expression is associated with elevated levels of the redox metabolite NADH in multiple cancers, including glioblastoma, oligodendroglioma, melanoma, neuroblastoma, and hepatocellular carcinoma. Mechanistically, TERT acts via the metabolic regulator FOXO1 to upregulate nicotinamide phosphoribosyl transferase, which is the key enzyme for NADH biosynthesis. Importantly, deuterium magnetic resonance spectroscopy (2H-MRS), which is a novel, clinically translatable metabolic imaging modality, can be leveraged for imaging TERT-linked NADH in preclinical tumor models in vivo. Since NADH is essential for pyruvate flux to lactate, 2H-MRS following administration of 2H-labeled pyruvate non-invasively visualizes TERT expression and reports on early response to therapy. Collectively, our study provides insights into the mechanisms of TERT-linked metabolic reprogramming and, importantly, establishes 2H-MRS as a pan-cancer strategy for imaging tumor immortality.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Indrawati Hadi ◽  
Daniel Reitz ◽  
Raphael Bodensohn ◽  
Olarn Roengvoraphoj ◽  
Stefanie Lietke ◽  
...  

Abstract Purpose Frequency and risk profile of radiation necrosis (RN) in patients with glioma undergoing either upfront stereotactic brachytherapy (SBT) and additional salvage external beam radiotherapy (EBRT) after tumor recurrence or vice versa remains unknown. Methods Patients with glioma treated with low-activity temporary iodine-125 SBT at the University of Munich between 1999 and 2016 who had either additional upfront or salvage EBRT were included. Biologically effective doses (BED) were calculated. RN was diagnosed using stereotactic biopsy and/or metabolic imaging. The rate of RN was estimated with the Kaplan Meier method. Risk factors were obtained from logistic regression models. Results Eighty-six patients (49 male, 37 female, median age 47 years) were included. 38 patients suffered from low-grade and 48 from high-grade glioma. Median follow-up was 15 months after second treatment. Fifty-eight patients received upfront EBRT (median total dose: 60 Gy), and 28 upfront SBT (median reference dose: 54 Gy, median dose rate: 10.0 cGy/h). Median time interval between treatments was 19 months. RN was diagnosed in 8/75 patients. The 1- and 2-year risk of RN was 5.1% and 11.7%, respectively. Tumor volume and irradiation time of SBT, number of implanted seeds, and salvage EBRT were risk factors for RN. Neither of the BED values nor the time interval between both treatments gained prognostic influence. Conclusion The combination of upfront EBRT and salvage SBT or vice versa is feasible for glioma patients. The risk of RN is mainly determined by the treatment volume but not by the interval between therapies.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii214-ii214
Author(s):  
Pavithra Viswanath ◽  
Georgios Batsios ◽  
Anne Marie Gillespie ◽  
Hema Artee Luchman ◽  
Joseph Costello ◽  
...  

Abstract Telomeres are nucleoprotein structures at chromosomal ends that shorten with cell division and constitute a natural barrier to proliferation. In order to proliferate indefinitely, all tumors require a telomere maintenance mechanism (TMM). Telomerase reverse transcriptase (TERT) expression is the TMM in most tumors, including low-grade oligodendrogliomas (LGOGs). In contrast, low-grade astrocytomas (LGAs) use the alternative lengthening of telomeres (ALT) pathway as their TMM. As molecular hallmarks of tumor proliferation, TMMs are attractive tumor biomarkers and therapeutic targets. Non-invasive imaging of TMM status will, therefore, allow assessment of tumor proliferation and treatment response. However, translational methods of imaging TMM status are lacking. Here, we show that TERT expression and the ALT pathway are associated with unique magnetic resonance spectroscopy (MRS)-detectable metabolic reprogramming in LGOGs and LGAs respectively. In genetically-engineered and patient-derived LGOG models, TERT expression is linked to elevated 1H-MRS-detectable NAD(P)/H, glutathione, aspartate and AXP. In contrast, the ALT pathway in LGAs is associated with higher α-ketoglutarate, glutamate, alanine and AXP. Importantly, elevated flux of hyperpolarized [1-13C]-alanine to pyruvate, which depends on α-ketoglutarate, is a non-invasive in vivo imaging biomarker of the ALT pathway in LGAs while elevated flux of hyperpolarized [1-13C]-alanine to lactate, which depends on NADH, is an imaging biomarker of TERT expression in LGOGs. Mechanistically, the ALT pathway in LGAs is linked to higher glutaminase (GLS), a key enzyme for α-ketoglutarate biosynthesis while TERT expression in LGOGs is associated with elevated nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme for NADH biosynthesis. Notably, TERT expression and the ALT pathway are linked to MRS-detectable metabolic reprogramming in LGOG and LGA patient biopsies, emphasizing the clinical validity of our observations. Collectively, we have identified unique metabolic signatures of TMM status that integrate critical oncogenic information with noninvasive imaging modalities that can improve diagnosis and treatment response monitoring for LGOG and LGA patients.


Sign in / Sign up

Export Citation Format

Share Document