scholarly journals 1665. Using Electronic Health Records to Describe TB in Community Health Settings: a Cohort Analysis in a Large Safety-Net Population

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S819-S820
Author(s):  
Jonathan Todd ◽  
Jon Puro ◽  
Matthew Jones ◽  
Jee Oakley ◽  
Laura A Vonnahme ◽  
...  

Abstract Background Over 80% of tuberculosis (TB) cases in the United States are attributed to reactivation of latent TB infection (LTBI). Eliminating TB in the United States requires expanding identification and treatment of LTBI. Centralized electronic health records (EHRs) are an unexplored data source to identify persons with LTBI. We explored EHR data to evaluate TB and LTBI screening and diagnoses within OCHIN, Inc., a U.S. practice-based research network with a high proportion of Federally Qualified Health Centers. Methods From the EHRs of patients who had an encounter at an OCHIN member clinic between January 1, 2012 and December 31, 2016, we extracted demographic variables, TB risk factors, TB screening tests, International Classification of Diseases (ICD) 9 and 10 codes, and treatment regimens. Based on test results, ICD codes, and treatment regimens, we developed a novel algorithm to classify patient records into LTBI categories: definite, probable or possible. We used multivariable logistic regression, with a referent group of all cohort patients not classified as having LTBI or TB, to identify associations between TB risk factors and LTBI. Results Among 2,190,686 patients, 6.9% (n=151,195) had a TB screening test; among those, 8% tested positive. Non-U.S. –born or non-English–speaking persons comprised 24% of our cohort; 11% were tested for TB infection, and 14% had a positive test. Risk factors in the multivariable model significantly associated with being classified as having LTBI included preferring non-English language (adjusted odds ratio [aOR] 4.20, 95% confidence interval [CI] 4.09–4.32); non-Hispanic Asian (aOR 5.17, 95% CI 4.94–5.40), non-Hispanic black (aOR 3.02, 95% CI 2.91–3.13), or Native Hawaiian/other Pacific Islander (aOR 3.35, 95% CI 2.92–3.84) race; and HIV infection (aOR 3.09, 95% CI 2.84–3.35). Conclusion This study demonstrates the utility of EHR data for understanding TB screening practices and as an important data source that can be used to enhance public health surveillance of LTBI prevalence. Increasing screening among high-risk populations remains an important step toward eliminating TB in the United States. These results underscore the importance of offering TB screening in non-U.S.–born populations. Disclosures All Authors: No reported disclosures

Author(s):  
Dimitris Bertsimas ◽  
Galit Lukin ◽  
Luca Mingardi ◽  
Omid Nohadani ◽  
Agni Orfanoudaki ◽  
...  

AbstractBackgroundTimely identification of COVID-19 patients at high risk of mortality can significantly improve patient management and resource allocation within hospitals. This study seeks to develop and validate a data-driven personalized mortality risk calculator for hospitalized COVID-19 patients.MethodsDe-identified data was obtained for 3,927 COVID-19 positive patients from six independent centers, comprising 33 different hospitals. Demographic, clinical, and laboratory variables were collected at hospital admission. The COVID-19 Mortality Risk (CMR) tool was developed using the XGBoost algorithm to predict mortality. Its discrimination performance was subsequently evaluated on three validation cohorts.FindingsThe derivation cohort of 3,062 patients has an observed mortality rate of 26.84%. Increased age, decreased oxygen saturation (≤ 93%), elevated levels of C-reactive protein (≥ 130 mg/L), blood urea nitrogen (≥ 18 mg/dL), and blood creatinine (≥ 1.2 mg/dL) were identified as primary risk factors, validating clinical findings. The model obtains out-of-sample AUCs of 0.90 (95% CI, 0.87-0.94) on the derivation cohort. In the validation cohorts, the model obtains AUCs of 0.92 (95% CI, 0.88-0.95) on Seville patients, 0.87 (95% CI, 0.84-0.91) on Hellenic COVID-19 Study Group patients, and 0.81 (95% CI, 0.76-0.85) on Hartford Hospital patients. The CMR tool is available as an online application at covidanalytics.io/mortality_calculator and is currently in clinical use.InterpretationThe CMR model leverages machine learning to generate accurate mortality predictions using commonly available clinical features. This is the first risk score trained and validated on a cohort of COVID-19 patients from Europe and the United States.Research in contextEvidence before this studyWe searched PubMed, BioRxiv, MedRxiv, arXiv, and SSRN for peer-reviewed articles, preprints, and research reports in English from inception to March 25th, 2020 focusing on disease severity and mortality risk scores for patients that had been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Earlier investigations showed promise at predicting COVID-19 disease severity using data at admission. However, existing work was limited by its data scope, either relying on a single center with rich clinical information or broader cohort with sparse clinical information. No analysis has leveraged Electronic Health Records data from an international multi-center cohort from both Europe and the United States.Added value of this studyWe present the first multi-center COVID-19 mortality risk study that uses Electronic Health Records data from 3,062 patients across four different countries, including Greece, Italy, Spain, and the United States, encompassing 33 hospitals. We employed state-of-the-art machine learning techniques to develop a personalized COVID-19 mortality risk (CMR) score for hospitalized patients upon admission based on clinical features including vitals, lab results, and comorbidities. The model validates clinical findings of mortality risk factors and exhibits strong performance, with AUCs ranging from 0.81 to 0.92 across external validation cohorts. The model identifies increased age as a primary mortality predictor, consistent with observed disease trends and subsequent public health guidelines. Additionally, among the vital and lab values collected at admission, decreased oxygen saturation (≤ 93%) and elevated levels of C-reactive protein (≥ 130 mg/L), blood urea nitrogen (≥ 18 mg/dL), blood creatinine (≥ 1.2 mg/dL), and blood glucose (≥180 mg/dL) are highlighted as key biomarkers of mortality risk. These findings corroborate previous studies that link COVID-19 severity to hypoxemia, impaired kidney function, and diabetes. These features are also consistent with risk factors used in severity risk scores for related respiratory conditions such as community-acquired pneumonia.Implications of all the available evidenceOur work presents the development and validation of a personalized mortality risk score. We take a data-driven approach to derive insights from Electronic Health Records data spanning Europe and the United States. While many existing papers on COVID-19 clinical characteristics and risk factors are based on Chinese hospital data, the similarities in our findings suggest consistency in the disease characteristics across international cohorts. Additionally, our machine learning model offers a novel approach to understanding the disease and its risk factors. By creating a single comprehensive risk score that integrates various admission data components, the calculator offers a streamlined way of evaluating COVID-19 patients upon admission to augment clinical expertise. The CMR model provides a valuable clinical decision support tool for patient triage and care management, improving risk estimation early within admission, that can significantly affect the daily practice of physicians.


2018 ◽  
Vol 136 (2) ◽  
pp. 164 ◽  
Author(s):  
Michele C. Lim ◽  
Michael V. Boland ◽  
Colin A. McCannel ◽  
Arvind Saini ◽  
Michael F. Chiang ◽  
...  

2020 ◽  
Vol 159 (6) ◽  
pp. 2221-2225.e6 ◽  
Author(s):  
Shailendra Singh ◽  
Mohammad Bilal ◽  
Haig Pakhchanian ◽  
Rahul Raiker ◽  
Gursimran S. Kochhar ◽  
...  

2018 ◽  
Vol 25 (2) ◽  
pp. 109-125 ◽  
Author(s):  
Mark Chun Moon ◽  
Rebecca Hills ◽  
George Demiris

BackgroundLittle is known about optimisation of electronic health records (EHRs) systems in the hospital setting while adoption of EHR systems continues in the United States.ObjectiveTo understand optimisation processes of EHR systems undertaken in leading healthcare organisations in the United States.MethodsInformed by a grounded theory approach, a qualitative study was undertaken that involved 11 in-depth interviews and a focus group with the EHR experts from the high performing healthcare organisations across the United States.ResultsThe study describes EHR optimisation processes characterised by prioritising exponentially increasing requests with predominant focus on improving efficiency of EHR, building optimisation teams or advisory groups and standardisation. The study discusses 16 types of optimisation that interdependently produced 16 results along with identifying 11 barriers and 20 facilitators to optimisation.ConclusionsThe study describes overall experiences of optimising EHRs in select high performing healthcare organisations in the US. The findings highlight the importance of optimising the EHR after, and even before, go-live and dedicating resources exclusively for optimisation.


2017 ◽  
pp. 960-973
Author(s):  
Karen Ervin

This chapter examines the literature of healthcare in the United States during the transitioning to electronic records. Key government legislation, such as the Health Insurance Portability and Accountability Act (HIPAA) and the Health Information Technology for Economic and Clinical Health Act (HITECH), which were part of the American Recovery and Reinvestment Act (ARRA) and the Affordable Health Care Act, are reviewed. The review concentrates on patient privacy issues, how they have been addressed in these acts, and what recommendations for improvement have been found in the literature. A comparison of the adoption of electronic health records on a nationwide scale in three countries is included. England, Australia, and the United States are all embarking in and are at different stages of implementing nationwide electronic health database systems. The resources used in locating relevant literature were PubMed, Medline, Highwire Press, State Library of Pennsylvania, and Google Scholar databases.


Sign in / Sign up

Export Citation Format

Share Document