scholarly journals 699. Case-Case Comparison of Exposures among Fluoroquinolone-Resistant and Pan-Susceptible Campylobacter Cases, Tennessee, 2016-2018

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S450-S450
Author(s):  
Samir Hanna ◽  
Katie Garman ◽  
John R Dunn

Abstract Background Campylobacter causes an estimated 1.5 million infections each year in the United States. Of those, approximately 448,400 infections are caused by antimicrobial resistant strains, including strains resistant to fluoroquinolones (e.g., nalidixic acid and ciprofloxacin), which are commonly used to treat campylobacteriosis. Campylobacter infection is commonly attributed to consuming poultry products. We compared exposure data between fluoroquinolone-resistant and pan-susceptible Campylobacter cases reported in 2016-2018 to assess attribution. Methods Broth microdilution was performed on Campylobacter isolates at CDC to determine the minimum inhibitory concentration for nine antimicrobial drugs. Whole genome sequencing (WGS) was performed at the Tennessee (TN) State Public Health Laboratory and the sequence data were analyzed at CDC to determine the genetic resistance determinants. Exposure data was collected through routine case interviews. Exposures among cases with fluoroquinolone-resistant infection and cases with no resistance to antimicrobials were compared. Results A total of 606 Campylobacter isolates from TN were submitted to CDC NARMS. Of those, 123 (20%) isolates were resistant to fluoroquinolones and 304 (50%) isolates were pan-susceptible. The gyr A (86) resistance gene was detected in 46/54 (85%) of resistant isolates. Exposure data were available for 59 (48%) fluoroquinolone-resistant cases and 186 (61%) pan-susceptible cases. Consumption of chicken (OR 2.1, p-value 0.03) and handling raw seafood (OR 3.1, p-value 0.03) were significantly associated with fluoroquinolone-resistance. More fluoroquinolone-resistant cases reported international travel compared to pan-susceptible cases (15% versus 4%) with OR 4.6, and p-value 0.004. Conclusion Fluoroquinolone-resistant Campylobacter infections were acquired domestically and internationally. Exposure to chicken products and handling raw seafood were reported more often among fluoroquinolone-resistant cases. Whole genome sequencing of Campylobacter isolates provides predicted resistance data. Coupling predicted resistance data with exposure data facilitates better understanding of source attribution of different strains. Disclosures All Authors: No reported disclosures

2020 ◽  
pp. 104063872093387
Author(s):  
Patrick K. Mitchell ◽  
Brittany D. Cronk ◽  
Ian E. H. Voorhees ◽  
Derek Rothenheber ◽  
Renee R. Anderson ◽  
...  

Epidemics of H3N8 and H3N2 influenza A viruses (IAVs) in dogs, along with recognition of spillover infections from IAV strains typically found in humans or other animals, have emphasized the importance of efficient laboratory testing. Given the lack of active IAV surveillance or immunization requirements for dogs, cats, or horses imported into the United States, serotype prediction and whole-genome sequencing of positive specimens detected at veterinary diagnostic laboratories are also needed. The conserved sequences at the ends of the viral genome segments facilitate universal amplification of all segments of viral genomes directly from respiratory specimens. Although several methods for genomic analysis have been reported, no optimization focusing on companion animal strains has been described, to our knowledge. We compared 2 sets of published universal amplification primers using 26 IAV-positive specimens from dogs, horses, and a cat. Libraries prepared from the resulting amplicons were sequenced using Illumina chemistry, and reference-based assemblies were generated from the data produced by both methods. Although both methods produced high-quality data, coverage profiles and base calling differed between the 2 methods. The sequence data were also used to identify the subtype of the IAV strains sequenced and then compared to standard PCR assays for neuraminidase types N2 and N8.


2018 ◽  
Vol 4 (7) ◽  
Author(s):  
Wim L. Cuypers ◽  
Jan Jacobs ◽  
Vanessa Wong ◽  
Elizabeth J. Klemm ◽  
Stijn Deborggraeve ◽  
...  

2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Sivakumar Shanmugam ◽  
Narender Kumar ◽  
Dina Nair ◽  
Mohan Natrajan ◽  
Srikanth Prasad Tripathy ◽  
...  

The genomes of 16 clinical Mycobacterium tuberculosis isolates were subjected to whole-genome sequencing to identify mutations related to resistance to one or more anti-Mycobacterium drugs. The sequence data will help in understanding the genomic characteristics of M. tuberculosis isolates and their resistance mutations prevalent in South India.


2020 ◽  
Vol 110 (7) ◽  
pp. 1255-1259
Author(s):  
Emily Giroux ◽  
Guillaume J. Bilodeau

The filamentous ascomycete fungus Lachnellula willkommii is the causal agent of European larch canker (ELC), one of the most destructive diseases of larch in Europe and a regulated plant pathogen of quarantine significance in Canada and the United States. L. willkommii was first detected in Massachusetts, North America in 1927 on a larch plantation cultivated with nursery stock imported from Great Britain. Despite the decades of practices aimed at eliminating the pathogen, it has reappeared in coastal areas of Canada and the United States. There is concern ELC could spread throughout the range of eastern larch, a transcontinental species typical of the Boreal forest that spans the North American landscape. There is geographic range overlap between several nonpathogenic indigenous Lachnellula species and the reported distribution of L. willkommii in North America. Morphological and biological methods to distinguish L. willkommii are often inadequate as the fungus does not always produce the phenotypic structures that distinguish it from these other saprophytic Lachnellula species. Whole genome sequencing technologies were used to obtain the draft genome sequences of L. willkommii and six other Lachnellula species. Molecular markers identified from the genomic data may be used to discriminate L. willkommii from its nonpathogenic relatives.


2019 ◽  
Vol 16 (7) ◽  
pp. 441-450 ◽  
Author(s):  
Eric Brown ◽  
Uday Dessai ◽  
Sherri McGarry ◽  
Peter Gerner-Smidt

2017 ◽  
Vol 30 (1) ◽  
pp. 42-55 ◽  
Author(s):  
Karen J. LeCount ◽  
Linda K. Schlater ◽  
Tod Stuber ◽  
Suelee Robbe Austerman ◽  
Timothy S. Frana ◽  
...  

The gel diffusion precipitin test (GDPT) and restriction endonuclease analysis (REA) have commonly been used in the serotyping and genotyping of Pasteurella multocida. Whole genome sequencing (WGS) and single nucleotide polymorphism (SNP) analysis has become the gold standard for other organisms, offering higher resolution than previously available methods. We compared WGS to REA and GDPT on 163 isolates of P. multocida to determine if WGS produced more precise results. The isolates used represented the 16 reference serovars, isolates with REA profiles matching an attenuated fowl cholera vaccine strain, and isolates from 10 different animal species. Isolates originated from across the United States and from Chile. Identical REA profiles clustered together in the phylogenetic tree. REA profiles that differed by only a few bands had fewer SNP differences than REA profiles with more differences, as expected. The GDPT results were diverse but it was common to see a single serovar show up repeatedly within clusters. Several errors were found when examining the REA profiles. WGS was able to confirm these errors and compensate for the subjectivity in analysis of REA. Also, results of WGS and SNP analysis correlated more closely with the epidemiologic data than GDPT. In silico results were also compared to a lipopolysaccharide rapid multiplex PCR test. From the data produced in our study, WGS and SNP analysis was superior to REA and GDPT and highlighted some of the issues with the older tests.


2016 ◽  
Vol 60 (9) ◽  
pp. 5515-5520 ◽  
Author(s):  
Patrick F. McDermott ◽  
Gregory H. Tyson ◽  
Claudine Kabera ◽  
Yuansha Chen ◽  
Cong Li ◽  
...  

ABSTRACTLaboratory-basedin vitroantimicrobial susceptibility testing is the foundation for guiding anti-infective therapy and monitoring antimicrobial resistance trends. We used whole-genome sequencing (WGS) technology to identify known antimicrobial resistance determinants among strains of nontyphoidalSalmonellaand correlated these with susceptibility phenotypes to evaluate the utility of WGS for antimicrobial resistance surveillance. Six hundred fortySalmonellaof 43 different serotypes were selected from among retail meat and human clinical isolates that were tested for susceptibility to 14 antimicrobials using broth microdilution. The MIC for each drug was used to categorize isolates as susceptible or resistant based on Clinical and Laboratory Standards Institute clinical breakpoints or National Antimicrobial Resistance Monitoring System (NARMS) consensus interpretive criteria. Each isolate was subjected to whole-genome shotgun sequencing, and resistance genes were identified from assembled sequences. A total of 65 unique resistance genes, plus mutations in two structural resistance loci, were identified. There were more unique resistance genes (n =59) in the 104 human isolates than in the 536 retail meat isolates (n =36). Overall, resistance genotypes and phenotypes correlated in 99.0% of cases. Correlations approached 100% for most classes of antibiotics but were lower for aminoglycosides and beta-lactams. We report the first finding of extended-spectrum β-lactamases (ESBLs) (blaCTX-M1andblaSHV2a) in retail meat isolates ofSalmonellain the United States. Whole-genome sequencing is an effective tool for predicting antibiotic resistance in nontyphoidalSalmonella, although the use of more appropriate surveillance breakpoints and increased knowledge of new resistance alleles will further improve correlations.


2017 ◽  
Author(s):  
Adriana Munoz ◽  
Boris Yamrom ◽  
Yoon-ha Lee ◽  
Peter Andrews ◽  
Steven Marks ◽  
...  

AbstractCopy number profiling and whole-exome sequencing has allowed us to make remarkable progress in our understanding of the genetics of autism over the past ten years, but there are major aspects of the genetics that are unresolved. Through whole-genome sequencing, additional types of genetic variants can be observed. These variants are abundant and to know which are functional is challenging. We have analyzed whole-genome sequencing data from 510 of the Simons Simplex Collections quad families and focused our attention on intronic variants. Within the introns of 546 high-quality autism target genes, we identified 63 de novo indels in the affected and only 37 in the unaffected siblings. The difference of 26 events is significantly larger than expected (p-val = 0.01) and using reasonable extrapolation shows that de novo intronic indels can contribute to at least 10% of simplex autism. The significance increases if we restrict to the half of the autism targets that are intolerant to damaging variants in the normal human population, which half we expect to be even more enriched for autism genes. For these 273 targets we observe 43 and 20 events in affected and unaffected siblings, respectively (p-value of 0.005). There was no significant signal in the number of de novo intronic indels in any of the control sets of genes analyzed. We see no signal from de novo substitutions in the introns of target genes.


2019 ◽  
Author(s):  
Ronan M. Doyle ◽  
Denise M. O’Sullivan ◽  
Sean D. Aller ◽  
Sebastian Bruchmann ◽  
Taane Clark ◽  
...  

AbstractBackgroundAntimicrobial resistance (AMR) poses a threat to public health. Clinical microbiology laboratories typically rely on culturing bacteria for antimicrobial susceptibility testing (AST). As the implementation costs and technical barriers fall, whole-genome sequencing (WGS) has emerged as a ‘one-stop’ test for epidemiological and predictive AST results. Few published comparisons exist for the myriad analytical pipelines used for predicting AMR. To address this, we performed an inter-laboratory study providing sets of participating researchers with identical short-read WGS data sequenced from clinical isolates, allowing us to assess the reproducibility of the bioinformatic prediction of AMR between participants and identify problem cases and factors that lead to discordant results.MethodsWe produced ten WGS datasets of varying quality from cultured carbapenem-resistant organisms obtained from clinical samples sequenced on either an Illumina NextSeq or HiSeq instrument. Nine participating teams (‘participants’) were provided these sequence data without any other contextual information. Each participant used their own pipeline to determine the species, the presence of resistance-associated genes, and to predict susceptibility or resistance to amikacin, gentamicin, ciprofloxacin and cefotaxime.ResultsIndividual participants predicted different numbers of AMR-associated genes and different gene variants from the same clinical samples. The quality of the sequence data, choice of bioinformatic pipeline and interpretation of the results all contributed to discordance between participants. Although much of the inaccurate gene variant annotation did not affect genotypic resistance predictions, we observed low specificity when compared to phenotypic AST results but this improved in samples with higher read depths. Had the results been used to predict AST and guide treatment a different antibiotic would have been recommended for each isolate by at least one participant.ConclusionsWe found that participants produced discordant predictions from identical WGS data. These challenges, at the final analytical stage of using WGS to predict AMR, suggest the need for refinements when using this technology in clinical settings. Comprehensive public resistance sequence databases and standardisation in the comparisons between genotype and resistance phenotypes will be fundamental before AST prediction using WGS can be successfully implemented in standard clinical microbiology laboratories.


Sign in / Sign up

Export Citation Format

Share Document