scholarly journals 1598. Antimicrobial Activity of the Novel β-Lactam Enhancer Combination Cefepime–Zidebactam (WCK-5222) Tested Against Gram-Negative Bacteria Isolated in United States Medical Centers from Patients with Bloodstream Infections

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S583-S583
Author(s):  
Mariana Castanheira ◽  
Michael D Huband ◽  
Robert K Flamm ◽  
Helio S Sader

Abstract Background Zidebactam (ZID) is a β-lactam enhancer antibiotic with a dual mechanism of action: high binding affinity to gram-negative PBP2 and β-lactamase (BL) inhibition. We evaluated the activity of cefepime (FEP) combined with ZID against contemporary clinical isolates of gram-negative bacilli (GNB) causing bloodstream infections (BSIs) in the US hospitals. Methods 1,239 GNB were consecutively collected (1/patient) from 34 US medical centers in 2018. Susceptibility (S) testing against FEP-ZID (1:1 ratio) and comparators were performed by reference broth microdilution method in a central laboratory. The FEP S breakpoint of ≤ 8 mg/L (CLSI, high dose) was applied to FEP-ZID for comparison purposes. An FEP-ZID S breakpoint of ≤ 64 mg/L has been proposed for non-fermentative GNB based on pharmacokinetic/pharmacodynamic target attainment and was also applied. Selected Enterobacterales (ENT) isolates were evaluated by whole-genome sequencing. Results FEP-ZID was highly active against ENT (MIC50/MIC90, 0.03/0.12 mg/L; highest MIC, 4 mg/L; Table), including multidrug-resistant (MDR, MIC50/MIC90, 0.12/0.25 mg/L) and carbapenem-resistant isolates (n = 7; MIC50, 0.5 mg/L). The highest FEP-ZID MIC values among E. coli, K. pneumoniae, and E. cloacae were 1, 2, and 0.25 mg/L, respectively. The most active comparators tested against MDR ENT were ceftazidime–avibactam (CAZ-AVI; MIC50/MIC90, 0.25/1 mg/L; 98.0%S), meropenem (MEM; MIC50/MIC90, 0.03/0.12 mg/L; 93.1%S) and amikacin (AMK; MIC50/MIC90, 4/16 mg/L; 92.1%S). The most active agents tested against P. aeruginosa were FEP-ZID (MIC50/MIC90, 1/4 mg/L; highest MIC, 8 mg/L), colistin (MIC50/MIC90, 0.5/1 mg/L; 100.0%S), and AMK (MIC50/MIC90, 4/8 mg/L; 99.2%S); whereas CAZ-AVI and ceftolozane–tazobactam were active against 96.5–96.7% of isolates. FEP-ZID exhibited good activity against Acinetobacter spp. (MIC50/MIC90, 2/8 mg/L) and S. maltophilia (MIC50/MIC90, 4/32 mg/L). S. maltophilia displayed low S rates to most comparators. Conclusion FEP-ZID demonstrated potent activity against a large collection GNB from BSI, including isolates resistant to other BL inhibitor combinations and/or carbapenems. These results support further clinical development of FEP-ZID. Disclosures All authors: No reported disclosures.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S755-S755 ◽  
Author(s):  
Helio S Sader ◽  
Cecilia G Carvalhaes ◽  
Rodrigo E Mendes ◽  
Mariana Castanheira ◽  
Robert K Flamm

Abstract Background Zidebactam (ZID) is a bicyclo-acyl hydrazide antibiotic with a dual mechanism of action: selective Gram-negative PBP2 binding and β-lactamase inhibition. We evaluated the frequency and antimicrobial susceptibility (S) of Gram-negative bacilli (GNB) isolated from patients with pneumonia in US hospitals. Methods All 3,086 clinical isolates were consecutively collected from patients hospitalized with pneumonia (1/patient) in 29 US medical centers in 2018, and the GNB (n = 2,171) were S tested against cefepime (FEP)-ZID (1:1 ratio) and comparators by reference broth microdilution methods. The FEP S breakpoint of ≤8 mg/L (CLSI, high dose) was applied to FEP-ZID for comparison purposes. An FEP-ZID S breakpoint of ≤64 mg/L has been proposed for non-fermentative GNB based on pharmacokinetic/pharmacodynamic target attainment and was applied. Enterobacterales (ENT) isolateswere screened for β-lactamase genes by whole-genome sequencing. Results GNB represented 70.3% of the collection, and the most common GNB were P. aeruginosa (PSA; 34.9% of GNB), K. pneumoniae (10.9%), E. coli (9.7%), S. marcescens (7.7%), and S. maltophilia (XM; 6.4%). FEP-ZID was highly active against PSA (MIC50/90, 2/8 mg/L; 98.8% and 99.9% inhibited at ≤8 and ≤16 mg/L, respectively; highest MIC, 32 mg/L), including resistant subsets (table). Among comparators, colistin (99.6%S), ceftazidime–avibactam (CAZ-AVI; 95.2%S), and ceftolozane–tazobactam (C-T; 94.5%S) were the most active compounds against PSA. FEP-ZID inhibited all ENT at ≤4 mg/L, including ESBL-producers (MIC90, 0.25 mg/L) and carbapenem-resistant ENT (MIC90, 4 mg/L). The most active comparators against ENT were CAZ-AVI (99.9%S), amikacin (98.5%S), and meropenem (MEM; 98.3%S). FEP-ZID inhibited 75.0% and 97.9% of XM isolates at ≤8 and ≤16 mg/L, respectively (highest MIC, 64 mg/L). The only other compounds active against XM were co-trimoxazole (MIC50/90, ≤0.12/2 mg/L; 95.7%S) and levofloxacin (MIC50/90, 1/2 mg/L; 70.7%S). FEP-ZID inhibited 71.0% and 98.9% of A. baumannii isolates at ≤8 and ≤64 mg/L,, respectively. Conclusion FEP-ZID showed potent in vitro activity against GNB causing pneumonia in US hospitals and may represent a valuable therapeutic option for these difficult-to-treat infections Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S746-S746
Author(s):  
Cecilia G Carvalhaes ◽  
Rodrigo E Mendes ◽  
Robert K Flamm ◽  
Helio S Sader

Abstract Background Cefepime–tazobactam (FEP-TAZ) is in clinical development at 2g/2g q8 hours administered over 90 minutes (high-dose extended infusion). We compared the susceptibility (S) of Gram-negative bacilli (GNB) from patients with bloodstream infections (BSI) and pneumonia (PN) against FEP-TAZ, piperacillin–tazobactam (PIP-TAZ), and ceftolozane–tazobactam (C-T). Methods In 2018, 3,389 GNB isolates (1/patient) were consecutively collected from patients with BSIs (1,349) and PN (2,040) in 40 United States (US) medical centers, and tested by reference broth microdilution methods for S against FEP-TAZ (TAZ at fixed 8 mg/L), PIP-TAZ, C-T, and comparators. The percentage of isolates inhibited at ≤8 mg/L (CLSI, cefepime high dose) and at ≤ 16 mg/L (pharmacokinetic/pharmacodynamic [PK/PD] S breakpoint based on extended infusion and high dosage) of FEP-TAZ were evaluated. Results FEP-TAZ (MIC50/90, 0.06/0.25 mg/L) was the most active TAZ combination against Enterobacterales (ENT) with a spectrum similar to that of meropenem (MEM; 99.3/97.2%S for BSI/PN), ceftazidime–avibactam (CAZ-AVI; 99.8/99.9%S), and amikacin (AMK; 99.3/98.3%S) and retained good activity against ceftriaxone-non-S (CRO-NS) and multidrug-resistant (MDR) ENT (table). Among the β-lactams (BLMs) tested, only FEP-TAZ (57.1/58.6% [BSI/PN] inhibited at ≤ 16 mg/L) and CAZ-AVI (71.4/96.6%S) were active against carbapenem-resistant ENT (CRE). CAZ-AVI (96.7/95.2%S for BSI/PN) and C-T (96.5/94.5%S) were the most active BLMs tested against P. aeruginosa (PSA), followed by FEP-TAZ (95.0/92.1% inhibited a ≤ 16 mg/L), FEP (89.3/78.2%S), and CAZ (85.1/79.0%S). FEP-TAZ (77.8/77.3% inhibited at ≤ 16 mg/L), C-T (81.2/82.9%S), and CAZ-AVI (77.8/84.5%S) retained activity against MEM-NS PSA. FEP-TAZ was the most active BLM against Acinetobacter spp. when the proposed PK/PD breakpoint was applied. Conclusion S rates were markedly lower among isolates from PN compared with BSI. FEP-TAZ was the most active TAZ combination tested against GNB isolated from patients with BSI and PN from US hospitals and exhibited greater spectrum than the carbapenems. The results of this study support further clinical development of high-dose extended-infusion FEP-TAZ for treatment of GNB infections. Disclosures All authors: No reported disclosures.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Robert K. Flamm

ABSTRACT Bacterial isolates were collected from patients hospitalized with pneumonia (PHP), including ventilator-associated pneumonia (VAP), from 76 U.S. medical centers in 2011 to 2015. The Gram-negative organisms (n = 11,185, including 1,097 from VAP) were tested for susceptibility to ceftazidime-avibactam and comparators by the broth microdilution method. β-Lactamase-encoding genes were screened using a microarray-based assay on selected isolates. Pseudomonas aeruginosa and Klebsiella spp. were the most common Gram-negative bacteria isolated from PHP and VAP. Ceftazidime-avibactam was very active against P. aeruginosa (n = 3,402; MIC50/MIC90, 2 and 4 μg/ml; 96.6% susceptible), including isolates nonsusceptible to meropenem (86.3% susceptible to ceftazidime-avibactam), piperacillin-tazobactam (85.6% susceptible), or ceftazidime (80.6% susceptible). Ceftazidime-avibactam was also highly active against Enterobacteriaceae (MIC50/MIC90, 0.12 and 0.5 μg/ml; 99.9% susceptible), including carbapenem-resistant Enterobacteriaceae (CRE) (n = 189; MIC50/MIC90, 0.5 and 2 μg/ml; 98.0% susceptible) and multidrug-resistant (MDR) (n = 674; MIC50/MIC90, 0.25 and 1 μg/ml; 98.8% susceptible) and extensively drug-resistant (XDR) (n = 156; MIC50/MIC90, 0.5 and 2 μg/ml; 98.1% susceptible) Enterobacteriaceae isolates, as well as Klebsiella species isolates showing an extended-spectrum β-lactamase (ESBL) screening-positive phenotype (n = 433; MIC50/MIC90, 0.25 and 1 μg/ml; 99.5% susceptible). Among Enterobacter spp. (24.8% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.4% of ceftazidime-nonsusceptible isolates, were susceptible to ceftazidime-avibactam. The most common β-lactamases detected among Klebsiella pneumoniae and E. coli isolates were K. pneumoniae carbapenemase (KPC)-like and CTX-M-15, respectively. Only 8 of 6,209 Enterobacteriaceae isolates (0.1%) were ceftazidime-avibactam nonsusceptible, three NDM-1-producing strains with ceftazidime-avibactam MIC values of >32 μg/ml and five isolates with ceftazidime-avibactam MIC values of 16 μg/ml and negative results for all β-lactamases tested. Susceptibility rates among isolates from VAP were generally similar or slightly higher than those from all PHP.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S374-S375 ◽  
Author(s):  
Helio S Sader ◽  
Mariana Castanheira ◽  
Jennifer M Streit ◽  
Leonard R Duncan ◽  
Robert K Flamm

Abstract Background Zidebactam (ZID), a bicyclo-acyl hydrazide, is a β-lactam enhancer with a dual mechanism of action involving selective and high binding affinity to Gram-negative (GN) PBP2 and β-lactamase inhibition. We evaluated the in vitro activity of cefepime (FEP) combined with ZID against GN organisms causing bloodstream infections (BSI) in hospitals worldwide. Methods A total of 2,094 isolates from 105 medical centers were evaluated. Isolates were collected from Europe (1,050), USA (331), Latin America (LA; 200) and the Asia-Pacific region (AP; 393) in 2015, and China (120) in 2013 by the SENTRY Program. Susceptibility (S) testing was performed by reference broth microdilution method against FEP-ZID (1:1 ratio) and comparators. The collection included 1,809 Enterobacteriaceae (ENT), 170 P. aeruginosa (PSA) and 115 Acinetobacter spp. (ASP). Results FEP-ZID was very active against ENT (MIC50/90 of ≤0.03/0.12 μg/mL) with 99.9 and 100.0% of isolates inhibited at ≤4/4 and ≤8/8 μg/mL, respectively, and retained potent activity against carbapenem-resistant (CRE; n = 44; MIC50/90, 1/4 μg/mL), multidrug-resistant (MDR), and extensively drug-resistant (XDR) isolates (Table). Amikacin (AMK; MIC50/90, 2/4 μg/mL; 97.7% S) was also very active against ENT, and colistin (COL; MIC50/90, 0.12/>8 μg/mL) inhibited only 87.3% of isolates at ≤2 μg/mL. FEP-ZID was highly active against PSA, including isolates resistant to other antipseudomonal β-lactams, MDR (MIC50/90, 4/8 μg/mL) and XDR (MIC50/90, 4/8 μg/mL) isolates. Among the comparators, COL (MIC50/90 of ≤0.5/1 μg/mL; 100.0% S) and AMK (MIC50/90, 4/16 μg/mL; 91.2% S) were the most active agents against PSA. FEP-ZID (MIC50/90, 16/32 μg/mL) was 4-fold more active than FEP against ASP. Conclusion FEP-ZID (WCK 5222) exhibited potent in vitro activity against a large worldwide collection of GN isolates from BSI, including MDR and XDR isolates. These results support further clinical development of WCK 5222 for treating BSI. Disclosures H. S. Sader, Wockhardt Bio Ag: Research Contractor, Research grant; M. Castanheira, Wockhardt Bio Ag: Research Contractor, Research grant; J. M. Streit, Wockhardt Bio Ag: Research Contractor, Research grant; L. R. Duncan, Wockhardt Bio Ag: Research Contractor, Research grant; R. K. Flamm, Wock: Research Contractor, Research support


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
James A. Karlowsky ◽  
Meredith A. Hackel ◽  
Samuel K. Bouchillon ◽  
Daniel F. Sahm

ABSTRACT WCK 5222 (cefepime-zidebactam, 2 g + 1g, every 8 h [q8h]) is in clinical development for the treatment of infections caused by carbapenem-resistant and multidrug-resistant (MDR) Gram-negative bacilli. We determined the in vitro susceptibility of 1,385 clinical isolates of non-carbapenem-susceptible Enterobacterales, MDR Pseudomonas aeruginosa (also non-carbapenem susceptible), Stenotrophomonas maltophilia, and Burkholderia spp. collected worldwide (49 countries) from 2014 to 2016 to cefepime-zidebactam (1:1 ratio), ceftazidime-avibactam, imipenem-relebactam, ceftolozane-tazobactam, and colistin using the CLSI broth microdilution method. Cefepime-zidebactam inhibited 98.5% of non-carbapenem-susceptible Enterobacterales (n = 1,018) at ≤8 μg/ml (provisional cefepime-zidebactam-susceptible MIC breakpoint). Against the subset of metallo-β-lactamase (MBL)-positive Enterobacterales (n = 214), cefepime-zidebactam inhibited 94.9% of isolates at ≤8 μg/ml. Further, it inhibited 99.6% of MDR P. aeruginosa (n = 262) isolates at ≤32 μg/ml (proposed cefepime-zidebactam-susceptible pharmacokinetic/pharmacodynamic MIC breakpoint), including all MBL-positive isolates (n = 94). Moreover, cefepime-zidebactam was active against the majority of isolates of Enterobacterales (≥95%) and P. aeruginosa (99%) that were not susceptible to ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-relebactam, and colistin. Most isolates (99%) of S. maltophilia (n = 101; MIC50, 8 μg/ml; MIC90, 32 μg/ml) and Burkholderia spp. (n = 4; MIC range, 16 to 32 μg/ml) were also inhibited by cefepime-zidebactam at ≤32 μg/ml. The activity of cefepime-zidebactam against carbapenem-resistant Gram-negative bacteria is ascribed to its β-lactam enhancer mechanism of action (i.e., zidebactam binding to penicillin binding protein 2 [PBP2] and its universal stability to both serine β-lactamases and MBLs). The results from this study support the continued development of cefepime-zidebactam as a potential therapy for infections caused by Enterobacterales, P. aeruginosa, and other nonfermentative Gram-negative bacilli where resistance to marketed antimicrobial agents is a limiting factor.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S93-S94
Author(s):  
Cecilia G Carvalhaes ◽  
Mariana Castanheira ◽  
Rodrigo E Mendes ◽  
Helio S Sader

Abstract Background We evaluated the antimicrobial susceptibility of Enterobacterales (ENT) and P. aeruginosa (PSA) causing bloodstream infections (BSIs) in the United States (US) hospitals. Methods A total of 3,317 ENT and 331 PSA isolates were consecutively collected (1/patient) from patients with BSI in 68 US medical centers in 2017–2018 and tested for susceptibility (S) by reference broth microdilution methods in a central laboratory as part of the International Network for Optimal Resistance Monitoring (INFORM) Program. β-Lactamase screening was performed by whole-genome sequencing on ENT with decreased S to broad-spectrum cephalosporins (ESBL phenotype). Results The most common ENT species isolated from BSI were E. coli (EC; 41.9% of ENT), K. pneumoniae (KPN; 24.4%), and E. cloacae (ECL; 8.7%), and the most active agents against ENT were ceftazidime–avibactam (CAZ-AVI; 99.9%S), amikacin (AMK; 99.6%S) and meropenem (MEM; 99.3%S). CAZ-AVI was active against all EC and KPN isolates (100.0%S). Only 2 ENT isolates (0.06%) were CAZ-AVI resistant, 2 NDM-1-producing ECL isolated in the New York City area. Ceftolozane–tazobactam (C-T) and piperacillin–tazobactam (PIP-TAZ) showed good activity against EC and KPN (92.2–98.9%S; Table), with limited activity against ECL (81.9–83.7%S). The most common ESBLs were CTX-M-type, which was observed in 93% of ESBL producers (mainly CTX-M-15 [64% of ESBL producers] and CTX-M-27 [13%]), and OXA-1/OXA-30 (42%); 42% of ESBL producers (n = 333, excluding carbapenemase producers) displayed ≥2 ESBL genes, mainly CTX-M-15 and OXA-1/OXA-30 (40% of ESBL producers). The most active agents against ESBL producers were CAZ-AVI (100.0%S), imipenem (99.4%S), and colistin (COL; 99.1%S). Only CAZ-AVI (99.4%S), AMK (96.2%S) and MEM (92.8%S) were active against >90% of multidrug-resistant (MDR) ENT. Among 19 carbapenem-resistant ENT (CRE; 0.6% of ENT), 9 produced a KPC-like, 2 an NDM-1, and 2 an NMC-A; carbapenemase genes were not found in 6 CRE isolates. COL (100.0%S), CAZ-AVI (98.5%S), AMK (98.5%S), C-T (98.1%S), and tobramycin (97.0%S) were very active against PSA. Conclusion CAZ-AVI exhibited potent in vitro activity and great spectrum against ENT (99.9%S) and PSA (98.5%) isolated from patients with BSI from US hospitals. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Dandan Yin ◽  
Shi Wu ◽  
Yang Yang ◽  
Qingyu Shi ◽  
Dong Dong ◽  
...  

ABSTRACT The in vitro activities of ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C-T), and comparators were determined for 1,774 isolates of Enterobacteriaceae and 524 isolates of Pseudomonas aeruginosa collected by 30 medical centers from the China Antimicrobial Surveillance Network (CHINET) in 2017. Antimicrobial susceptibility testing was performed by the CLSI broth microdilution method, and blaKPC and blaNDM were detected by PCR for all carbapenem-resistant Enterobacteriaceae (CRE). Ceftazidime-avibactam demonstrated potent activity against almost all Enterobacteriaceae (94.6% susceptibility; MIC50, ≤0.25 mg/liter; MIC90, ≤0.25 to >32 mg/liter) and good activity against P. aeruginosa (86.5% susceptibility; MIC50/90, 2/16 mg/liter). Among the CRE, 50.8% (189/372 isolates) were positive for blaKPC-2, which mainly existed in ceftazidime-avibactam-susceptible Klebsiella pneumoniae isolates (92.1%, 174/189). Among the CRE, 17.7% (66/372 isolates) were positive for blaNDM, which mainly existed in strains resistant to ceftazidime-avibactam (71.7%, 66/92). Ceftolozane-tazobactam showed good in vitro activity against Escherichia coli and Proteus mirabilis (MIC50/90, ≤0.5/2 mg/liter; 90.5 and 93.8% susceptibility, respectively), and the rates of susceptibility of K. pneumoniae (MIC50/90, 2/>64 mg/liter) and P. aeruginosa (MIC50/90, 1/8 mg/liter) were 52.7% and 88.5%, respectively. Among the CRE strains, 28.6% of E. coli isolates and 85% of K. pneumoniae isolates were still susceptible to ceftazidime-avibactam, but only 7.1% and 1.9% of them, respectively, were susceptible to ceftolozane-tazobactam. The rates of susceptibility of the carbapenem-resistant P. aeruginosa isolates to ceftazidime-avibactam (65.7%) and ceftolozane-tazobactam (68%) were similar. Overall, both ceftazidime-avibactam and ceftolozane-tazobactam were highly active against clinical isolates of Enterobacteriaceae and P. aeruginosa recently collected across China, and ceftazidime-avibactam showed activity superior to that of ceftolozane-tazobactam against Enterobacteriaceae, whereas ceftolozane-tazobactam showed a better effect against P. aeruginosa.


2015 ◽  
Vol 59 (6) ◽  
pp. 3263-3270 ◽  
Author(s):  
Helio S. Sader ◽  
Paul R. Rhomberg ◽  
David J. Farrell ◽  
Ronald N. Jones

ABSTRACTArbekacin is a broad-spectrum aminoglycoside licensed for systemic use in Japan and under clinical development as an inhalation solution in the United States. We evaluated the occurrence of organisms isolated from pneumonias in U.S. hospitalized patients (PHP), including ventilator-associated pneumonia (VAP), and thein vitroactivity of arbekacin. Organism frequency was evaluated from a collection of 2,203 bacterial isolates (339 from VAP) consecutively collected from 25 medical centers in 2012 through the SENTRY Antimicrobial Surveillance Program. Arbekacin activity was tested against 904 isolates from PHP collected in 2012 from 62 U.S. medical centers and 303 multidrug-resistant (MDR) organisms collected worldwide in 2009 and 2010 from various infection types. Susceptibility to arbekacin and comparator agents was evaluated by the reference broth microdilution method. The four most common organisms from PHP wereStaphylococcus aureus,Pseudomonas aeruginosa,Klebsiellaspp., andEnterobacterspp. The highest arbekacin MIC amongS. aureusisolates from PHP (43% methicillin-resistantS. aureus[MRSA]) was 4 μg/ml. AmongP. aeruginosaisolates from PHP, only one had an arbekacin MIC of >16 μg/ml (MIC50and MIC90, 1 and 4 μg/ml), and susceptibility rates for gentamicin, tobramycin, and amikacin were 88.0, 90.0, and 98.0%, respectively. Arbekacin (MIC50, 2 μg/ml) and tobramycin (MIC50, 4 μg/ml) were the most potent aminoglycosides tested againstAcinetobacter baumannii. AgainstEnterobacteriaceaefrom PHP, arbekacin and gentamicin (MIC50and MIC90, 0.25 to 1 and 1 to 8 μg/ml for both compounds) were generally more potent than tobramycin (MIC50and MIC90, 0.25 to 2 and 1 to 32 μg/ml) and amikacin (MIC50and MIC90, 1 to 2 and 2 to 32 μg/ml). Arbekacin also demonstrated potentin vitroactivity against a worldwide collection of well-characterized MDR Gram-negative and MRSA strains.


2017 ◽  
Vol 66 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Fevronia Kolonitsiou ◽  
Matthaios Papadimitriou-Olivgeris ◽  
Anastasia Spiliopoulou ◽  
Vasiliki Stamouli ◽  
Vasileios Papakostas ◽  
...  

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections’ (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011–13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs’ incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative’s BSI.


Author(s):  
Dustin O'Neall ◽  
Emese Juhász ◽  
Ákos Tóth ◽  
Edit Urbán ◽  
Judit Szabó ◽  
...  

Abstract Our objective was to compare the activity ceftazidime-avibactam (C/A) and ceftolozane–tazobactam (C/T) against multidrug (including carbapenem) resistant Pseudomonas aeruginosa clinical isolates collected from six diagnostic centers in Hungary and to reveal the genetic background of their carbapenem resistance. Two hundred and fifty consecutive, non-duplicate, carbapenem-resistant multidrug resistant (MDR) P. aeruginosa isolates were collected in 2017. Minimal inhibitory concentration values of ceftazidime, cefepime, piperacillin/tazobactam, C/A and C/T were determined by broth microdilution method and gradient diffusion test. Carbapenem inactivation method (CIM) test was performed on all isolates. Carbapenemase-encoding blaVIM, blaIMP, blaKPC, blaOXA-48-like and blaNDM genes were identified by multiplex PCR. Of the isolates tested, 33.6& and 32.4& showed resistance to C/A and C/T, respectively. According to the CIM test results, 26& of the isolates were classified as carbapenemase producers. The susceptibility of P. aeruginosa isolates to C/A and C/T without carbapenemase production was 89& and 91&, respectively. Of the CIM-positive isolates, 80& were positive for blaVIM and 11& for blaNDM. The prevalence of Verona integron-encoded metallo-beta-lactamase (VIM)-type carbapenemase was 20.8&. NDM was present in 2.8& of the isolates. Although the rate of carbapenemase-producing P. aeruginosa strains is high, a negative CIM result indicates that either C/A or C/T could be effective even if carbapenem resistance has been observed.


Sign in / Sign up

Export Citation Format

Share Document