An in Vitro Biomechanical Model of Differing Pedicle Screw Configurations for Long Construct Segmental Thoracic Fixation

2017 ◽  
Vol 13 (6) ◽  
pp. 718-723 ◽  
Author(s):  
Alexander Tuchman ◽  
Alexander W L Turner ◽  
Melodie F Metzger ◽  
Frank L Acosta

Abstract BACKGROUND The optimum pattern of pedicle screw (PS) fixation during long-segment thoracic fixation has not been determined. OBJECTIVE To evaluate rod stress and construct stability with minimal, alternating, skipped, and bilateral PS constructs in the iatrogenically destabilized thoracic spine. METHODS Eight cadaveric thoracic specimens (T3-T12) were initially tested intact to ±5 Nm using a custom 6 degree-of-freedom spine testing apparatus in flexion-extension (FE), lateral bending (LB), and axial rotation. Specimens were instrumented with T4-T10 bilateral PS, with Ponte osteotomies to introduce instability. Rods were bent to fit the PS and then spines were tested with the minimal, alternating, skipped, and bilateral fixation patterns. Range of motion (ROM) was calculated from T4-T10 and segmentally. In addition, strain gauges fixed to the spinal rods measured rod stress under FE and LB. Results were compared using ANOVA and post hoc Holm Sidak tests. RESULTS All fixation patterns provided significant reductions in ROM with respect to the intact spine. In all motion planes, minimal provided the least amount of rigidity, while bilateral provide the greatest; however, no statistically significant differences were detected in FE. In LB and axial rotation, skipped, alternating, and bilateral were all significantly more rigid than minimal (P < .01). Rod strains were greatest under LB and correlated with overall construct ROM, where bilateral had significantly lower strain than the other patterns (P < .05). CONCLUSION All constructs effectively decreased thoracic ROM. There was significant improvement in stabilization and decreased rod stress when more fixation points beyond the minimal construct were included.

2010 ◽  
Vol 12 (2) ◽  
pp. 183-189 ◽  
Author(s):  
Hakan Bozkuş ◽  
Mehmet Şenoğlu ◽  
Seungwon Baek ◽  
Anna G. U. Sawa ◽  
Ali Fahir Özer ◽  
...  

Object It is unclear how the biomechanics of dynamic posterior lumbar stabilization systems and traditional rigid pedicle screw-rod systems differ. This study examined the biomechanical response of a hinged-dynamic pedicle screw compared with a standard rigid screw used in a 1-level pedicle screw-rod construct. Methods Unembalmed human cadaveric L3–S1 segments were tested intact, after L4–5 discectomy, after rigid pedicle screw-rod fixation, and after dynamic pedicle screw-rod fixation. Specimens were loaded using pure moments to induce flexion, extension, lateral bending, and axial rotation while recording motion optoelectronically. Specimens were then loaded in physiological flexion-extension while applying 400 N of compression. Moment and force across instrumentation were recorded from pairs of strain gauges mounted on the interconnecting rods. Results The hinged-dynamic screws allowed an average of 160% greater range of motion during flexion, extension, lateral bending, and axial rotation than standard rigid screws (p < 0.03) but 30% less motion than normal. When using standard screws, bending moments and axial loads on the rods were greater than the bending moments and axial loads on the rods when using dynamic screws during most loading modes (p < 0.05). The axis of rotation shifted significantly posteriorly more than 10 mm from its normal position with both devices. Conclusions In a 1-level pedicle screw-rod construct, hinged-dynamic screws allowed a quantity of motion that was substantially closer to normal motion than that allowed by rigid pedicle screws. Both systems altered kinematics similarly. Less load was borne by the hinged screw construct, indicating that the hinged-dynamic screws allow less stress shielding than standard rigid screws.


Neurosurgery ◽  
2013 ◽  
Vol 73 (3) ◽  
pp. 517-527 ◽  
Author(s):  
Bruno C.R. Lazaro ◽  
Phillip M. Reyes ◽  
Anna G.U.S. Newcomb ◽  
Ali S. Yaqoobi ◽  
Leonardo B.C. Brasiliense ◽  
...  

Abstract BACKGROUND: Transitioning from rigid to flexible hardware at the distal rostral or caudal lumbar or lumbosacral level hypothetically maintains motion at the transition level and protects the transition level and intact adjacent levels from stresses caused by fusion. OBJECTIVE: To biomechanically compare transitional and rigid constructs with uninstrumented specimens in vitro. METHODS: Human cadaveric L2-S1 segments were tested (1) intact, (2) after L5-S1 rigid pedicle screw-rod fixation, (3) after L4-S1 rigid pedicle screw-rod fixation, and (4) after hybrid fixation rigidly spanning L5-S1 and dynamically spanning L4-L5. Pure moments (maximum 7.5 Nm) induced flexion, extension, lateral bending, and axial rotation while motion was recorded optoelectronically. Additionally, specimens were studied in flexion/extension with a 400-N compressive follower load. Strain gauges on laminae were used to extract facet loads. RESULTS: The range of motion at the transition segment (L4-L5) for the hybrid construct was significantly less than for the intact condition and significantly greater than for the rigid 2-level construct during lateral bending and axial rotation but not during flexion or extension. Sagittal axis of rotation at L4-L5 shifted significantly after rigid 2-level or hybrid fixation (P &lt; .003) but shifted significantly farther posterior and rostral with rigid fixation (P &lt; .02). Instrumentation altered L4-L5 facet load at more than the L3-L4 facet load. CONCLUSION: The effect of the dynamic rod segment on the kinematics of the transition level was less pronounced than that of a fully rigid construct in vitro with this particular rod system. This experimental model detected no biomechanical alterations at adjacent intact levels with hybrid or rigid systems.


Neurosurgery ◽  
2001 ◽  
Vol 49 (6) ◽  
pp. 1399-1408 ◽  
Author(s):  
Andrzej Maciejczak ◽  
Michał Ciach ◽  
Maciej Radek ◽  
Andrzej Radek ◽  
Jan Awrejcewicz

ABSTRACT OBJECTIVE To determine whether the Cloward technique of cervical discectomy and fusion increases immediate postoperative stiffness of single cervical motion segment after application of interbody dowel bone graft. METHODS We measured and compared the stiffness of single-motion segments in cadaveric cervical spines before and immediately after interbody fusion with the Cloward technique. Changes in range of motion and stiffness of the C5–C6 segment were measured in a bending flexibility test (flexion, extension, lateral bending and axial rotation) before and after a Cloward procedure in 11 fresh-frozen human cadaveric specimens from the 4th through the 7th vertebrae. RESULTS The Cloward procedure produced a statistically significant increase in stiffness of the operated segment in flexion and lateral bending when compared with the intact spine. The less stiff the segment before the operation, the greater the increase in its postoperative flexural stiffness (statistically significant). The Cloward procedure produced nonuniform changes in rotational and extensional stiffness that increased in some specimens and decreased in others. CONCLUSION Our data demonstrate that Cloward interbody fusion increases immediate postoperative stiffness of an operated segment only in flexion and lateral bending in cadaveric specimens in an in vitro environment. Thus, Cloward fusion seems a relatively ineffective method for increasing the stiffness of a construct. This may add to discussion on the use of spinal instrumentation and postoperative management of patients after cervical discectomy, which varies from bracing in hard collars through immobilization in soft collars to no external orthosis.


2020 ◽  
Vol 43 (12) ◽  
pp. 803-810 ◽  
Author(s):  
Masud Rana ◽  
Sandipan Roy ◽  
Palash Biswas ◽  
Shishir Kumar Biswas ◽  
Jayanta Kumar Biswas

The aim of this study is to design a novel expanding flexible rod device, for pedicle screw fixation to provide dynamic stability, based on strength and flexibility. Three-dimensional finite-element models of lumbar spine (L1-S) with flexible rod device on L3-L4-L5 levels are developed. The implant material is taken to be Ti-6Al-4V. The models are simulated under different boundary conditions, and the results are compared with intact model. In natural model, total range of motion under 10 Nm moment were found 66.7°, 24.3° and 13.59°, respectively during flexion–extension, lateral bending and axial rotation. The von Mises stress at intact bone was 4 ± 2 MPa and at bone, adjacent to the screw in the implanted bone, was 6 ± 3 MPa. The von Mises stress of disc of intact bone varied from 0.36 to 2.13 MPa while that of the disc between the fixed vertebra of the fixation model reduced by approximately 10% for flexion and 25% for extension compared to intact model. The von Mises stresses of pedicle screw were 120, 135, 110 and 90 MPa during flexion, extension, lateral bending, and axial rotation, respectively. All the stress values were within the safe limit of the material. Using the flexible rod device, flexibility was significantly increased in flexion/extension but not in axial rotation and lateral bending. The results suggest that dynamic stabilization system with respect to fusion is more effective for homogenizing the range of motion of the spine.


2014 ◽  
Vol 20 (4) ◽  
pp. 387-395 ◽  
Author(s):  
Sabrina A. Gonzalez-Blohm ◽  
James J. Doulgeris ◽  
Kamran Aghayev ◽  
William E. Lee ◽  
Jake Laun ◽  
...  

Object Through in vitro biomechanical testing, the authors compared the performance of a vertically expandable lateral lumbar interbody cage (EC) under two different torque-controlled expansions (1.5 and 3.0 Nm) and with respect to an equivalent lateral lumbar static cage (SC) with and without pedicle screw fixation. Methods Eleven cadaveric human L2–3 segments were evaluated under the following conditions: 1) intact; 2) discectomy; 3) EC under 1.50 Nm of torque expansion (EC-1.5Nm); 4) EC under 3.00 Nm of torque expansion (EC-3.0Nm); 5) SC; and 6) SC with a bilateral pedicle screw system (SC+BPSS). Load-displacement behavior was evaluated for each condition using a combination of 100 N of axial preload and 7.5 Nm of torque in flexion and extension (FE), lateral bending (LB), and axial rotation (AR). Range of motion (ROM), neutral zone stiffness (NZS), and elastic zone stiffness (EZS) were statistically compared among conditions using post hoc Wilcoxon signed-rank comparisons after Friedman tests, with a significance level of 0.05. Additionally, any cage height difference between interbody devices was evaluated. When radiographic subsidence was observed, the specimen's data were not considered for the analysis. Results The final cage height in the EC-1.5Nm condition (12.1 ± 0.9 mm) was smaller (p < 0.001) than that in the EC-3.0Nm (13.9 ± 1.1 mm) and SC (13.4 ± 0.8 mm) conditions. All instrumentation reduced (p < 0.01) ROM with respect to the injury and increased (p ≤ 0.01) NZS in flexion, extension, and LB as well as EZS in flexion, LB, and AR. When comparing the torque expansions, the EC-3.0Nm condition had smaller (p < 0.01) FE and AR ROM and greater (p ≤ 0.04) flexion NZS, extension EZS, and AR EZS. The SC condition performed equivalently (p ≥ 0.10) to both EC conditions in terms of ROM, NZS, and EZS, except for EZS in AR, in which a marginal (p = 0.05) difference was observed with respect to the EC-3.0Nm condition. The SC+BPSS was the most rigid construct in terms of ROM and stiffness, except for 1) LB ROM, in which it was comparable (p = 0.08) with that of the EC-1.5Nm condition; 2) AR NZS, in which it was comparable (p > 0.66, Friedman test) with that of all other constructs; and 3) AR EZS, in which it was comparable with that of the EC-1.5Nm (p = 0.56) and SC (p = 0.08) conditions. Conclusions A 3.0-Nm torque expansion of a lateral interbody cage provides greater immediate stability in FE and AR than a 1.5-Nm torque expansion. Moreover, the expandable device provides stability comparable with that of an equivalent (in size, shape, and bone-interface material) SC. Specifically, the SC+BPSS construct was the most stable in FE motion. Even though an EC may seem a better option given the minimal tissue disruption during its implantation, there may be a greater chance of endplate collapse by over-distracting the disc space because of the minimal haptic feedback from the expansion.


2021 ◽  
pp. 1-9

OBJECTIVE Low fusion rates and cage subsidence are limitations of lumbar fixation with stand-alone interbody cages. Various approaches to interbody cage placement exist, yet the need for supplemental posterior fixation is not clear from clinical studies. Therefore, as prospective clinical studies are lacking, a comparison of segmental kinematics, cage properties, and load sharing on vertebral endplates is needed. This laboratory investigation evaluates the mechanical stability and biomechanical properties of various interbody fixation techniques by performing cadaveric and finite element (FE) modeling studies. METHODS An in vitro experiment using 7 fresh-frozen human cadavers was designed to test intact spines with 1) stand-alone lateral interbody cage constructs (lateral interbody fusion, LIF) and 2) LIF supplemented with posterior pedicle screw-rod fixation (360° constructs). FE and kinematic data were used to validate a ligamentous FE model of the lumbopelvic spine. The validated model was then used to evaluate the stability of stand-alone LIF, transforaminal lumbar interbody fusion (TLIF), and anterior lumbar interbody fusion (ALIF) cages with and without supplemental posterior fixation at the L4–5 level. The FE models of intact and instrumented cases were subjected to a 400-N compressive preload followed by an 8-Nm bending moment to simulate physiological flexion, extension, bending, and axial rotation. Segmental kinematics and load sharing at the inferior endplate were compared. RESULTS The FE kinematic predictions were consistent with cadaveric data. The range of motion (ROM) in LIF was significantly lower than intact spines for both stand-alone and 360° constructs. The calculated reduction in motion with respect to intact spines for stand-alone constructs ranged from 43% to 66% for TLIF, 67%–82% for LIF, and 69%–86% for ALIF in flexion, extension, lateral bending, and axial rotation. In flexion and extension, the maximum reduction in motion was 70% for ALIF versus 81% in LIF for stand-alone cases. When supplemented with posterior fixation, the corresponding reduction in ROM was 76%–87% for TLIF, 86%–91% for LIF, and 90%–92% for ALIF. The addition of posterior instrumentation resulted in a significant reduction in peak stress at the superior endplate of the inferior segment in all scenarios. CONCLUSIONS Stand-alone ALIF and LIF cages are most effective in providing stability in lateral bending and axial rotation and less so in flexion and extension. Supplemental posterior instrumentation improves stability for all interbody techniques. Comparative clinical data are needed to further define the indications for stand-alone cages in lumbar fusion surgery.


Neurosurgery ◽  
2006 ◽  
Vol 58 (3) ◽  
pp. 522-527 ◽  
Author(s):  
Aftab Karim ◽  
Debi Mukherjee ◽  
Murali Ankem ◽  
Jorge Gonzalez-Cruz ◽  
Donald Smith ◽  
...  

Abstract OBJECTIVE: Anterior lumbar interbody fusion (ALIF) has proven effective for indications including discogenic back pain, nonunion, and instability. Current practice involves posterior pedicle screw augmentation of the ALIF procedure (ALIF-PPS). This approach requires intraoperative repositioning of the patient for percutaneous posterior pedicle screw placement. We have developed a novel technique in which the ALIF procedure is augmented with anterior pedicle screws (APS; ALIF-APS). In this study, we introduce this new technique and compare the biomechanical stability of the novel ALIF-APS with the current standard ALIF-PPS. METHODS: The technique was demonstrated in a cadaveric L4–S1 specimen using neuronavigation and fluoroscopy. Plain radiographs and computed tomographic scans of the construct were obtained. Twelve cadaveric spines (7 men and 5 women) from donors with an average age of 81 years (range, 64–93 yr) were then harvested from L4–S1. Six specimens were dedicated to ALIF-APS constructs, and the remaining six were dedicated to ALIF-PPS constructs. The specimens were then studied at L5–S1 in the following steps: 1) intact form, 2) after anterior discectomy, 3) after implantation of titanium cages (ALIF), and 4) after APS or PPS fixation in conjunction with the ALIF. Measurements were obtained in axial rotation and left and right lateral bending flexion-extension. Data were normalized by calculating the ratio of the stiffness of the instrumented to the intact spine. Statistical analyses were then performed on the data. RESULTS: Radiographs and computed tomographic scans of the construct showed accurate placement of the APS at L5 and S1. The normalized data showed that ALIF-APS and ALIF-PPS had approximately equal stability in axial rotation (1.17 ± 0.43 versus 0.85 ± 0.14), lateral bending (0.93 ± 0.22 versus 0.95 ± 0.16), and flexion- extension (0.77 ± 0.13 versus 0.84 ± 0.2). Paired t test analysis did not show a significant difference between the biomechanical stiffness of ALIF-APS and ALIF-PPS in axial rotation, lateral bending, and flexion-extension. CONCLUSION: We demonstrate a new technique in a cadaveric specimen whereby the ALIF procedure is augmented with APS fixation using neuronavigation and fluoroscopy. Biomechanical evaluation of the constructs suggests that the ALIF-APS has comparable stability with ALIF-PPS. APS augmentation of ALIF has potential advantages over the current standard ALIF-PPS because it can 1) eliminate the patient repositioning step, 2) minimize the total number of incisions and the total operative time, and 3) protect against dislocation of the ALIF interbody graft or cage. Work is in progress to develop a low-profile system for the novel APS constructs described here.


2016 ◽  
Vol 25 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Nestor G. Rodriguez-Martinez ◽  
Amey Savardekar ◽  
Eric W. Nottmeier ◽  
Stephen Pirris ◽  
Phillip M. Reyes ◽  
...  

OBJECTIVE Transvertebral screws provide stability in thoracic spinal fixation surgeries, with their use mainly limited to patients who require a pedicle screw salvage technique. However, the biomechanical impact of transvertebral screws alone, when they are inserted across 2 vertebral bodies, has not been studied. In this study, the authors assessed the stability offered by a transvertebral screw construct for posterior instrumentation and compared its biomechanical performance to that of standard bilateral pedicle screw and rod (PSR) fixation. METHODS Fourteen fresh human cadaveric thoracic spine segments from T-6 to T-11 were divided into 2 groups with similar ages and bone quality. Group 1 received transvertebral screws across 2 levels without rods and subsequently with interconnecting bilateral rods at 3 levels (T8–10). Group 2 received bilateral PSR fixation and were sequentially tested with interconnecting rods at T7–8 and T9–10, at T8–9, and at T8–10. Flexibility tests were performed on intact and instrumented specimens in both groups. Presurgical and postsurgical O-arm 3D images were obtained to verify screw placement. RESULTS The mean range of motion (ROM) per motion segment with transvertebral screws spanning 2 levels compared with the intact condition was 66% of the mean intact ROM during flexion-extension (p = 0.013), 69% during lateral bending (p = 0.015), and 47% during axial rotation (p < 0.001). The mean ROM per motion segment with PSR spanning 2 levels compared with the intact condition was 38% of the mean intact ROM during flexion-extension (p < 0.001), 57% during lateral bending (p = 0.007), and 27% during axial rotation (p < 0.001). Adding bilateral rods to the 3 levels with transvertebral screws decreased the mean ROM per motion segment to 28% of intact ROM during flexion-extension (p < 0.001), 37% during lateral bending (p < 0.001), and 30% during axial rotation (p < 0.001). The mean ROM per motion segment for PSR spanning 3 levels was 21% of intact ROM during flexion-extension (p < 0.001), 33% during lateral bending (p < 0.001), and 22% during axial rotation (p < 0.001). CONCLUSIONS Biomechanically, fixation with a novel technique in the thoracic spine involving transvertebral screws showed restoration of stability to well within the stability provided by PSR fixation.


2005 ◽  
Vol 2 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Kurt Eichholz ◽  
Christopher Barry ◽  
Paige Rubenbauer ◽  
Aditya Ingalhalikar ◽  
...  

Object. The authors compared the biomechanical performance of the human cadaveric spine implanted with a metallic ball-and-cup artificial disc at L4–5 with the spine's intact state and after anterior discectomy. Methods. Seven human L2—S1 cadaveric spines were mounted on a biomechanical testing frame. Pure moments of 0, 1.5, 3.0, 4.5, and 6.0 Nm were applied to the spine at L-2 in six degrees of motion (flexion, extension, right and left lateral bending, and right and left axial rotation). The spines were tested in the intact state as well as after anterior L4–5 discectomy. The Maverick disc was implanted in the discectomy defect, and load testing was repeated. The artificial disc created greater rigidity for the spine than was present after discectomy, and the spine performed biomechanically in a manner comparable with the intact state. Conclusions. The results indicate that in an in vitro setting, this model of artificial disc stabilizes the spine after discectomy, restoring motion comparable with that of the intact state.


Author(s):  
Nicole A. DeVries ◽  
Anup A. Gandhi ◽  
Douglas C. Fredericks ◽  
Joseph D. Smucker ◽  
Nicole M. Grosland

Due to the limited availability of human cadaveric specimens, animal models are often utilized for in vitro studies of various spinal disorders and surgical techniques. Sheep spines have similar geometry, disc space, and lordosis as compared to humans [1,2]. Several studies have identified the geometrical similarities between the sheep and human spine; however these studies have been limited to quantifying the anatomic dimensions as opposed to the biomechanical responses [2–3]. Although anatomical similarities are important, biomechanical correspondence is imperative to understand the effects of disorders, surgical techniques, and implant designs. Some studies [3–5] have focused on experimental biomechanics of the sheep cervical functional spinal units (FSUs). Szotek and colleagues [1] studied the biomechanics of compression and impure flexion-extension for the C2-C7 intact sheep spine. However, to date, there is no comparison of the sheep spine using pure flexion-extension, lateral bending, or axial rotation moments for multilevel specimen. Therefore, the purpose of this study was to conduct in vitro testing of the intact C2-C7 sheep cervical spine.


Sign in / Sign up

Export Citation Format

Share Document