Alternative Reproductive Tactics

2020 ◽  
pp. 429-446
Author(s):  
Shawn Garner ◽  
Bryan Neff

Alternative reproductive tactics (ARTs) describe variation among individuals of a single sex in the tactics used to obtain mating opportunities. In crustaceans, ARTs have been observed in multiple taxa and take a variety of forms. ARTs are most commonly observed in males and are generally associated with intense competition among males to monopolize access to breeding females. ARTs frequently involve a guard tactic that competes with other males to monopolize access to females, while a second usurper tactic foregos competition with other males and instead obtains mating opportunities through sneaking behavior. Guard and usurper tactics may be expressed conditionally based on a male’s ability to guard a female (e.g. his body size, the abundance of competitors), or may be expressed as discrete phenotypes that can also include morphological differentiation. For example, in Jassa amphipods the guard tactic is associated with large body size and an enlarged “thumb” on the claw that is used in aggressive interactions with other males, while the usurper tactic is associated with small body size and a reduced thumb. The usurper tactic can take two forms in a marine isopod: small males (gamma) use sneaking behavior to avoid competition with large males (alpha), whereas intermediate-sized males (beta) use female mimicry to avoid competition. Overall, ARTs are well-represented in crustaceans, with many opportunities for continued study to better characterize these unique adaptations.

2021 ◽  
Author(s):  
Adam N. Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Abstract BackgroundUnder strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher pheromone quantities than fighters, which would improve the fitness of the scrambler phenotype, e.g. through female mimicry to avoid aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of the female sex pheromone α-acaridial through gas chromatography analysis. ResultsWe found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. ConclusionFurther elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Adam N. Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Abstract Background Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers (which have occasionally been observed to induce mating behavior in other males)—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher quantities of the putative female sex-pheromone α-acaridial than fighters, which would improve the fitness of the scrambler phenotype through female mimicry by allowing avoidance of aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of α-acaridial through gas chromatography analysis. Results We found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. Conclusion Further elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


2021 ◽  
Author(s):  
Adam N Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield-Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Background Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male polymorphic species. Here, we used the bulb mite — in which males are either armed fighters that kill conspecifics, or unarmed scramblers — as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher pheromone quantities than fighters, which would improve the fitness of the scrambler phenotype, e.g. through female mimicry to avoid aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of the female sex pheromone α acaridial through gas chromatography analysis. Results We found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. Conclusion Further elucidation of pheromone functionality in bulb mites, and additional inter and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a byproduct of allometric scaling, or diet mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


2008 ◽  
Vol 86 (2) ◽  
pp. 92-98 ◽  
Author(s):  
Bryan D. Neff ◽  
Elizabeth L. Clare

Male alternative reproductive tactics have been described in many mating systems. In fishes, these tactics typically involve a territorial male that defends a spawning site or nest and a parasitic male that uses sneaking or female mimicry to steal fertilizations from the territorial male. In this paper, we use molecular genetic markers to examine the success of males that adopt alternative reproductive tactics in two sunfishes, comprising the bluegill ( Lepomis macrochirus Rafinesque, 1819) and the pumpkinseed ( Lepomis gibbosus (L., 1758)). In sunfishes, the tactics are referred to as parental (territorial male) and cuckolder (parasitic male). We show that cuckoldry rates peak in the second trimester of the breeding season in bluegill, whereas cuckoldry rates are lowest during this period in pumpkinseed. We also show that paternity of parental male bluegill is positively correlated with body condition, but not body length or mass. No relationship between these phenotypic variables and paternity in pumpkinseed was found. We discuss the patterns of cuckoldry in relation to differences between the species in mating opportunities, parental male defence ability, and cuckolder density. Finally, we discuss how the paternity data can be used to differentiate between two mechanisms underlying the expression of alternative reproductive tactics, comprising the condition strategy and alternative strategies.


Author(s):  
Ricardo Wilches ◽  
William H Beluch ◽  
Ellen McConnell ◽  
Diethard Tautz ◽  
Yingguang Frank Chan

Abstract Most phenotypic traits in nature involve the collective action of many genes. Traits that evolve repeatedly are particularly useful for understanding how selection may act on changing trait values. In mice, large body size has evolved repeatedly on islands and under artificial selection in the laboratory. Identifying the loci and genes involved in this process may shed light on the evolution of complex, polygenic traits. Here, we have mapped the genetic basis of body size variation by making a genetic cross between mice from the Faroe Islands, which are among the largest and most distinctive natural populations of mice in the world, and a laboratory mouse strain selected for small body size, SM/J. Using this F2 intercross of 841 animals, we have identified 111 loci controlling various aspects of body size, weight and growth hormone levels. By comparing against other studies, including the use of a joint meta-analysis, we found that the loci involved in the evolution of large size in the Faroese mice were largely independent from those of a different island population or other laboratory strains. We hypothesize that colonization bottleneck, historical hybridization, or the redundancy between multiple loci have resulted in the Faroese mice achieving an outwardly similar phenotype through a distinct evolutionary path.


Author(s):  
Isain Zapata ◽  
M. Leanne Lilly ◽  
Meghan E. Herron ◽  
James A. Serpell ◽  
Carlos E. Alvarez

AbstractVery little is known about the etiology of personality and psychiatric disorders. Because the core neurobiology of many such traits is evolutionarily conserved, dogs present a powerful model. We previously reported genome scans of breed averages of ten traits related to fear, anxiety, aggression and social behavior in multiple cohorts of pedigree dogs. As a second phase of that discovery, here we tested the ability of markers at 13 of those loci to predict canine behavior in a community sample of 397 pedigree and mixed-breed dogs with individual-level genotype and phenotype data. We found support for all markers and loci. By including 122 dogs with veterinary behavioral diagnoses in our cohort, we were able to identify eight loci associated with those diagnoses. Logistic regression models showed subsets of those loci could predict behavioral diagnoses. We corroborated our previous findings that small body size is associated with many problem behaviors and large body size is associated with increased trainability. Children in the home were associated with anxiety traits; illness and other animals in the home with coprophagia; working-dog status with increased energy and separation-related problems; and competitive dogs with increased aggression directed at familiar dogs, but reduced fear directed at humans and unfamiliar dogs. Compared to other dogs, Pit Bull-type dogs were not defined by a set of our markers and were not more aggressive; but they were strongly associated with pulling on the leash. Using severity-threshold models, Pit Bull-type dogs showed reduced risk of owner-directed aggression (75th quantile) and increased risk of dog-directed fear (95th quantile). Our findings have broad utility, including for clinical and breeding purposes, but we caution that thorough understanding is necessary for their interpretation and use.


2019 ◽  
Author(s):  
Jessica K. Abbott ◽  
Oscar Rios-Cardenas ◽  
Molly Morris

AbstractAlternative reproductive tactics occur when individuals of the same sex have a suite of morphological and/or behavioural traits that allow them to pursue different reproductive strategies. A common pattern is e.g. the existence of “courter” and “sneaker” tactics within males. We have previously argued that alternative reproductive tactics should be subject to genetic conflict over the phenotypic expression of traits, similar to sexual antagonism. In this process, which we called intra-locus tactical conflict, genetically determined tactics experience conflicting selection on a shared phenotypic trait, such as body size, but a positive genetic correlation between tactics in body size prevents either tactic from reaching its optimum. Recently, other authors have attempted to extend this idea to developmentally plastic alternative reproductive tactics, with mixed results. However, it is not clear whether we should expect intra-locus tactical conflict in developmentally plastic tactics or not. We have therefore run a series of simulation models investigating under what conditions we should expect to see positive estimates of the inter-tactical genetic correlation, since a positive genetic correlation is a prerequisite for the existence of intra-locus tactical conflict. We found that for autosomal, X-linked, and Y-linked genetically-determined tactics, estimated inter-tactical genetic correlations were generally high. However, for developmentally plastic tactics, the genetic correlation depends on the properties of the switching threshold between tactics. If it is fixed, then estimated genetic correlations are positive, but if there is genetic variation in the switch-point, then any sign and magnitude of estimated genetic correlation is possible, even for highly heritable traits where the true underlying correlation is perfect. This means that caution should be used when investigating genetic constraints in plastic phenotypes.


2009 ◽  
Vol 30 (2) ◽  
pp. 233-243 ◽  
Author(s):  
Gilson Rivas Fuenmayor ◽  
Paulo Passos ◽  
Cesar Barrio-Amorós

AbstractTwo new species of Atractus are described from Venezuela uplands and highlands on two northern Andean cordilleras. Atractus acheronius, known only from Sierra de Perijá, can be distinguished from congeners by having 17 dorsal scale rows, presence of preocular scales, seven upper and lower labials, seven maxillary teeth, 166 ventrals in the single female, 23 subcaudals, dorsum brown with small dark brown dots, large body size, huge body diameter, and small tail size. Atractus multidentatus, known only from north versant of the Cordillera de Mérida, can be distinguished from congeners by having 17 dorsal scale rows, eight upper and lower labials, 18 maxillary teeth, 153 ventrals in the single female, nine subcaudals, dorsum reddish brown with five longitudinal dark brown stripes, small body size, small body diameter, and small tail size. Additionally, a discussion concerning the species description of Atractus based on unique specimens is provided.


2016 ◽  
Vol 283 (1825) ◽  
pp. 20152945 ◽  
Author(s):  
Leif Engqvist ◽  
Michael Taborsky

Frequency-dependent selection may drive adaptive diversification within species. It is yet unclear why the occurrence of alternative reproductive tactics (ARTs) is highly divergent between major animal taxa. Here we aim to clarify the environmental and social conditions favouring the evolution of intra-population variance of male reproductive phenotypes. Our results suggest that genetically determined ARTs that are fixed for life evolve when there is strong selection on body size due to size-dependent competitiveness, in combination with environmental factors reducing size benefits. The latter may result from growth costs or, more generally, from age-dependent but size-independent mortality causes. This generates disruptive selection on growth trajectories underlying tactic choice. In many parameter settings, the model also predicts ARTs to evolve that are flexible and responsive to current conditions. Interestingly, the conditions favouring the evolution of flexible tactics diverge considerably from those favouring genetic variability. Nevertheless, in a restricted but relevant parameter space, our model predicts the simultaneous emergence and maintenance of a mixture of multiple tactics, both genetically and conditionally determined. Important conditions for the emergence of ARTs include size variation of competitors, which is inherently greater in species with indeterminate growth than in taxa reproducing only after reaching their terminal body size. This is probably the reason why ARTs are more common in fishes than in other major taxa.


Zootaxa ◽  
2021 ◽  
Vol 4948 (2) ◽  
pp. 261-274
Author(s):  
V. DEEPAK ◽  
FRANK TILLACK ◽  
NILADRI B. KAR ◽  
VIVEK SARKAR ◽  
PRATYUSH. P. MOHAPATRA

We describe a new species of fan-throated lizard of the genus Sitana from the Deccan peninsula of India. The new species is from the Sitana sivalensis clade and can be readily diagnosed morphologically from S. sivalensis, S. fusca and S. schleichi by having the dewlap extending beyond forearm insertion. The new species differs from all other congeners in the combination of morphological characters such as a feebly serrated dewlap with a dark blue line on the throat in adult males (versus  a well serrated dewlap with a bright blue patch and orange spots in S. ponticeriana complex), small body size (versus a large body size in S. gokakensis and S. thondalu) and a relatively smaller dewlap size (relatively larger in S. laticeps, S. spinaecephalus, S. dharwarensis, S. gokakensis, S. thondalu, S. marudhamneydhal, S. ponticeriana and S. visiri). The new species was found to be commonly distributed in arid and open habitats as well as in farmlands and plantations in northern Andhra Pradesh, eastern Madhya Pradesh and most parts of Chhattisgarh and Odisha states. 


Sign in / Sign up

Export Citation Format

Share Document