Appendixes

Author(s):  
David Jon Furbish

Definitions and formulae used at various points in the text to manipulate vectors are listed below. Additional useful formulae, including geometrical and physical interpretations complementary to those provided in this text, can be found in standard texts on vector analysis and in mathematical handbooks. The Standard Mathematical Tables published by CRC Press (Boca Raton, Florida) is a particularly handy resource, and most college-level calculus texts cover introductory vector analysis as part of the material intended for a third-semester course. Appendix A in Bird, Stewart, and Lightfoot (1960) is a very good summary of vector and tensor notation presented in the context of fluid mechanics. Section 17.1.1 begins with several basic definitions of vector quantities that generally apply to any orthogonal coordinate system. The notation for unit vectors in Cartesian coordinates, i, j, and k, are used in this section, but it is understood that this notation may be directly replaced with symbols for unit vectors associated with other orthogonal coordinates. Section 17.1.2 then covers differential operations for Cartesian coordinates. Although the notation used for these differential operations in Cartesian coordinates is the same as that for other coordinate systems, the actual operations connoted by the notation are different, and must be defined separately (Appendix 17.2). Let S and T denote scalar functions, and let U, V, and W denote vectors. If U = 〈U1, U2, U3〉, then . . . U = U1i + U2j + U3k . . . . . . (17.1) . . .

Author(s):  
Vyacheslav N. Ivanov ◽  
Alisa A. Shmeleva

The aim of this work is to receive the geometrical equations of strains of shells at the common orthogonal not conjugated coordinate system. At the most articles, textbooks and monographs on the theory and analysis of the thin shell there are considered the shells the coordinate system of which is given at the lines of main curvatures. Derivation of the geometric equations of the deformed state of the thin shells in the lines of main curvatures is given, specifically, at monographs of the theory of the thin shells of V.V. Novozhilov, K.F. Chernih, A.P. Filin and other Russian and foreign scientists. The standard methods of mathematic analyses, vector analysis and differential geometry are used to receive them. The method of tensor analysis is used for receiving the common equations of deformation of non orthogonal coordinate system of the middle shell surface of thin shell. The equations of deformation of the shells in common orthogonal coordinate system (not in the lines of main curvatures) are received on the base of this equation. Derivation of the geometric equations of deformations of thin shells in orthogonal not conjugated coordinate system on the base of differential geometry and vector analysis (without using of tensor analysis) is given at the article. This access may be used at textbooks as far as at most technical institutes the base of tensor analysis is not given.


2016 ◽  
Author(s):  
Marlene Vega ◽  
Warren M. Christensen ◽  
Brian Farlow ◽  
Gina Passante ◽  
Michael E. Loverude

1970 ◽  
Vol 10 (04) ◽  
pp. 393-404 ◽  
Author(s):  
G.J. Hirasaki ◽  
P.M. O'Dell

Abstract For most reservoirs the reservoir thickness and dip vary with position. For such reservoirs, the use of a Cartesian coordinate system is awkward as the coordinate surfaces are planes and the finite-difference grid elements are rectangular parallepipeds. However, these reservoirs may be efficiently parallepipeds. However, these reservoirs may be efficiently modeled with a curvilinear coordinate system that has coordinate surfaces that coincide with the reservoir surfaces. A procedure is presented that may be used to determine a curvilinear coordinate system that will conform with the geometry of the reservoir. The reservoir geometry is described by the depth of the top of the reservoir and the thickness. The mass conservation equations are presented in curvilinear coordinates. The finite-difference equations differ from the usual Cartesian coordinate formulation by a factor multiplying the pore volume and transmissibilities. A numerical example is presented to illustrate the magnitude of the error that may occur in the computed oil recovery if the Cartesian coordinate system is simply modified to yield the correct depth and pore volumes. Introduction Many reservoirs have a shape that is inconvenient and possibly inaccurate to model with Cartesian coordinates. The use of a curvilinear coordinate system that follows the shape of the reservoir can be advantageous for such reservoirs. The formulation discussed here will have the greatest advantage in modeling thin reservoirs but will have little advantage in modeling a reservoir whose thickness is greater than its radius of curvature, such as a pinnacle reef. pinnacle reef. In this paper the reader is introduced to various grid systems used to model reservoirs. A brief discussion of some concepts of differential geometry contrasts differences between Cartesian coordinates and curvilinear coordinates. A curvilinear coordinate system for modeling reservoir geometry is presented. Formulation of the conservation equations in curvilinear coordinates and the necessary modifications to pore volume and transmissibility are discussed. A numerical example illustrates the magnitude of the error that may result from some coordinate systems. COORDINATE SYSTEMS AND RESERVOIR GRID NETWORKS A reservoir is usually described with the depth, thickness, boundaries, etc., shown on a structure map with sea level as a reference plane. For example, the subsea depth may be shown as a contour map on the reference plane with a Cartesian coordinate grid superimposed on the reference plane as shown on Fig. 1. The Cartesian coordinates, plane as shown on Fig. 1. The Cartesian coordinates, (y1, y2), have been defined as the coordinates for the reference plane. If the reservoir surfaces are parallel planes, Cartesian coordinates may be used. The Cartesian coordinate may be rotated such that the coordinate surfaces coincide with the reservoir surfaces. SPEJ P. 393


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


2020 ◽  
Vol 962 (8) ◽  
pp. 24-37
Author(s):  
V.E. Tereshchenko

The article suggests a technique for relation global kinematic reference system and local static realization of global reference system by regional continuously operated reference stations (CORS) network. On the example of regional CORS network located in the Novosibirsk Region (CORS NSO) the relation parameters of the global reference system WGS-84 and its local static realization by CORS NSO network at the epoch of fixing stations coordinates in catalog are calculated. With the realization of this technique, the main parameters to be determined are the speed of displacement one system center relativly to another and the speeds of rotation the coordinate axes of one system relatively to another, since the time evolution of most stations in the Russian Federation is not currently provided. The article shows the scale factor for relation determination of coordinate systems is not always necessary to consider. The technique described in the article also allows detecting the errors in determining the coordinates of CORS network in global coordinate system and compensate for them. A systematic error of determining and fixing the CORS NSO coordinates in global coordinate system was detected. It is noted that the main part of the error falls on the altitude component and reaches 12 cm. The proposed technique creates conditions for practical use of the advanced method Precise Point Positioning (PPP) in some regions of the Russian Federation. Also the technique will ensure consistent PPP method results with the results of the most commonly used in the Russian Federation other post-processing methods of high-precision positioning.


1990 ◽  
Vol 141 ◽  
pp. 99-110
Author(s):  
Han Chun-Hao ◽  
Huang Tian-Yi ◽  
Xu Bang-Xin

The concept of reference system, reference frame, coordinate system and celestial sphere in a relativistic framework are given. The problems on the choice of celestial coordinate systems and the definition of the light deflection are discussed. Our suggestions are listed in Sec. 5.


Geophysics ◽  
1990 ◽  
Vol 55 (10) ◽  
pp. 1386-1388 ◽  
Author(s):  
M. Becquey ◽  
M. Dubesset

In well seismics, when operating with a three‐component tool, particle velocities are measured in the sonde coordinate system but are often needed in other systems (e.g., source‐bound or geographic). When the well is vertical, a change from the three orthogonal components of the sonde to another orthogonal coordinate system can be performed through one rotation around the vertical axis and, if necessary, another one around a horizontal axis (Hardage, 1983). If the well is deviated, the change of coordinate system remains easy in the case when the source is located at the vertical of the sonde, or in the case when the source stands in the vertical plane defined by the local well axis. In the general case (offset VSPs or walkaways) or when looking for unknown sources (such as microseismic emissions induced by hydraulic fracturing), coordinate rotation may still be performed, provided that we first get back to a situation in which one of the axes is vertical.


2021 ◽  
Vol 22 (4) ◽  
pp. 217-224
Author(s):  
Yu. N. Chelnokov ◽  
A. V. Molodenkov

For the functioning of algorithms of inertial orientation and navigation of strapdown inertial navigation system (SINS), it is necessary to conduct a mathematical initial alignment of SINS immediately before the operation of these algorithms. An efficient method of initial alignment (not calibration!) of SINS is the method of vector matching. Its essence is to determine the relative orientation of the instrument trihedron Y (related to the unit of SINS sensors) and the reference trihedron X according to the results of measuring the projections of at least two non-collinear vectors of the axes on both trihedrons. We address the estimation of the initial orientation of the object using the method of gyrocompassing, which is a form of vector matching method. This initial alignment method is based upon using the projections of the apparent acceleration vector a and the absolute angular velocity vector ω of the object in the coordinate systems X and Y. It is assumed that the three single-axis accelerometers and the three gyroscopes (generally speaking, the three absolute angular velocity sensors of any type), which measure the projections of the vectors a and ω, are installed along the axes of the instrument coordinate system Y. If the projections of the same vectors on the axes of the base coordinate system X are known, then it is possible to estimate the mutual orientation of X and Y trihedrons. We are solving the problem of the initial alignment of SINS for the case of a fixed base, when the accelerometers measure the projection gi (i = 1, 2, 3) of the gravity acceleration vector g, and the gyroscopes measure the projections u i of the vector u of angular velocity of Earth’s rotation on the body-fixed axes. The projections of the same vectors on the axes of the normal geographic coordinate system X are also estimated using the known formulas. The correlation between the projections of the vectors u and g in X and Y coordinate system is given by known quaternion relations. In these relations the unknown variable is the orientation quaternion of the object in the X coordinate system. By separating the scalar and vector parts in the equations, we obtain an overdetermined system of linear algebraic equations (SLAE), where the unknown variable is the finite rotation vector θ, which aligns the X and Y coordinate systems (it is assumed that there is no half-turn of the X coordinate system with respect to the Y coordinate system). Thus, the mathematical formulation of the problem of SINS initial alignment by means of gyrocompassing is to find the unknown vector θ from the derived overdetermined SLAE. When finding the vector θ directly from the SLAE (algorithm 1) and data containing measurement errors, the components of the vector q are also determined with errors (especially the component of the vector θ, which is responsible for the course ψ of an object). Depending on the pre-defined in the course of numerical experiments values of heading ψ, roll ϑ, pitch γ angles of an object and errors of the input data (measurements of gyroscopes and accelerometers), the errors of estimating the heading angle Δψ of an object may in many cases differ from the errors of estimating the roll Δϑ and pitch Δγ angles by two-three (typically) or more orders. Therefore, in order to smooth out these effects, we have used the A. N. Tikhonov regularization method (algorithm 2), which consists of multiplying the left and right sides of the SLAE by the transposed matrix of coefficients for that SLAE, and adding the system regularization parameter to the elements of the main diagonal of the coefficient matrix for the newly derived SLAE (if necessary, depending on the value of the determinant of this matrix). Analysis of the results of the numerical experiments on the initial alignment shows that the errors of estimating the object’s orientation angles Δψ, Δϑ, Δγ using algorithm 2 are more comparable (more consistent) regarding their order.


Sign in / Sign up

Export Citation Format

Share Document