Volterra Models

Author(s):  
Ronald K. Pearson

One of the main points of Chapter 4 is that nonlinear moving-average (NMAX) models are both inherently better-behaved and easier to analyze than more general NARMAX models. For example, it was shown in Sec. 4.2.2 that if ɡ(· · ·) is a continuous map from Rq+1 to R1 and if ys = ɡ (us,..., us), then uk → us implies yk → ys. Although it is not always satisfied, continuity is a relatively weak condition to impose on the map ɡ(· · ·) . For example, Hammerstein or Wiener models based on moving average models and the hard saturation nonlinearity represent discontinuous members of the class of NMAX models. This chapter considers the analytical consequences of requiring ɡ(·) to be analytic, implying the existence of a Taylor series expansion. Although this requirement is much stronger than continuity, it often holds, and when it does, it leads to an explicit representation: Volterra models. The principal objective of this chapter is to define the class of Volterra models and discuss various important special cases and qualitative results. Most of this discussion is concerned with the class V(N,M) of finite Volterra models, which includes the class of linear finite impulse response models as a special case, along with a number of practically important nonlinear moving average model classes. In particular, the finite Volterra model class includes Hammerstein models, Wiener models, and Uryson models, along with other more general model structures. In addition, one of the results established in this chapter is that most of the bilinear models discussed in Chapter 3 may be expressed as infinite-order Volterra models. This result is somewhat analogous to the equivalence between finite-dimensional linear autoregressive models and infinite-dimensional linear moving average models discussed in Chapter 2. The bilinear model result presented here is strictly weaker, however, since there exist classes of bilinear models that do not possess Volterra series representations. Specifically, it is shown in Sec. 5.6 that completely bilinear models do not exhibit Volterra series representations. Conversely, one of the results discussed at the end of this chapter is that the class of discrete-time fading memory systems may be approximated arbitrarily well by finite Volterra models (Boyd and Chua, 1985).

Econometrica ◽  
2021 ◽  
Vol 89 (6) ◽  
pp. 2787-2825 ◽  
Author(s):  
Rui Da ◽  
Dacheng Xiu

We conduct inference on volatility with noisy high‐frequency data. We assume the observed transaction price follows a continuous‐time Itô‐semimartingale, contaminated by a discrete‐time moving‐average noise process associated with the arrival of trades. We estimate volatility, defined as the quadratic variation of the semimartingale, by maximizing the likelihood of a misspecified moving‐average model, with its order selected based on an information criterion. Our inference is uniformly valid over a large class of noise processes whose magnitude and dependence structure vary with sample size. We show that the convergence rate of our estimator dominates n 1/4 as noise vanishes, and is determined by the selected order of noise dependence when noise is sufficiently small. Our implementation guarantees positive estimates in finite samples.


2012 ◽  
Vol 605-607 ◽  
pp. 1781-1787
Author(s):  
Ming Shan Zhang ◽  
Jian Huang

In reflection seismology the reflectivity sequence is of primary interest and must be estimated. Estimation of the reflectivity sequence is based on deconvolution of seismic trace data. Modelling the seismic trace as the non-Gaussian moving average time series, we propose a deconvolution method based on the modified estimation, which is consistent estimation of moving average models with heavy tailed error distribution. The asymptotic equivalence is established between the proposed method and the deconvolution using . Simulation studies are presented to validate the equivalency. Furthermore, based on this equivalence the consistency problem of the deconvolution has been discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Kaizhi Yu ◽  
Hong Zou ◽  
Daimin Shi

It is frequent to encounter integer-valued time series which are small in value and show a trend having relatively large fluctuation. To handle such a matter, we present a new first order integer-valued moving average model process with structural changes. The models provide a flexible framework for modelling a wide range of dependence structures. Some statistical properties of the process are discussed and moment estimation is also given. Simulations are provided to give additional insight into the finite sample behaviour of the estimators.


2020 ◽  
Vol 2020 (66) ◽  
pp. 101-110
Author(s):  
. Azhar Kadhim Jbarah ◽  
Prof Dr. Ahmed Shaker Mohammed

The research is concerned with estimating the effect of the cultivated area of barley crop on the production of that crop by estimating the regression model representing the relationship of these two variables. The results of the tests indicated that the time series of the response variable values is stationary and the series of values of the explanatory variable were nonstationary and that they were integrated of order one ( I(1) ), these tests also indicate that the random error terms are auto correlated and can be modeled according to the mixed autoregressive-moving average models ARMA(p,q), for these results we cannot use the classical estimation method to estimate our regression model, therefore, a fully modified M method was adopted, which is a robust estimation methods, The estimated results indicate a positive significant relation between the production of barley crop and cultivated area.


Sign in / Sign up

Export Citation Format

Share Document