Recurrence

Author(s):  
Mary Jane West-Eberhard

Recurrent phenotypes are similar or identical phenotypic traits with discontinuous phylogenetic distributions, which owe their similarity to common ancestry (homology). A recurrent trait may be found as a fixed trait, as an alternative phenotype (one morph of a polymorphism or polyphenism), or as a low-frequency developmental anomaly. Recurrence, then, is the phyletically disjunct appearance of homologous traits. An example is the repeated evolution of larviform (paedomorphic) adults in salamanders. The larviform morph is characterized by retention in the reproductive stage of homologous larval traits such as external gills and a tail. This has involved changes at various points in the hormonal mechanism that controls metamorphosis in all salamanders (chapter 25), perhaps under selection for accelerated reproduction in stressful environments (Whiteman, 1994). As is characteristic of recurrent phenotypes, the occurrence of the reproductive larviform adult morph varies in frequency from one species of salamander to another: it can be absent, an anomaly (<5% of population), a common (>5%) alternative to complete metamorphosis, or a predominant or fixed form. Even within the genus Ambystoma, the unmetamorphosed larviform adult occurs as an occasional anomaly in some populations, as a facultatively expressed alternative phenotype in others (e.g., A. tigrinum) and as a fixed form in others (e.g., A. dumerilii; Collins et al., 1993). All atavisms and reversions (see chapter 12) are examples of recurrence. Discontinuity of expression is expected in combinatorial evolution, where traits are turned off and on and expressed in different combinations due to regulatory change. The growing evidence of homoplasy in phylogenetic studies is important evidence that combinatorial evolution occurs and that homoplasy itself is worthy of study, not just a source of “noise” in cladistics (Wake, 1996a). Homoplasy has been defined as “possession by two or more taxa of a character derived not from the nearest common ancestor but through convergence, parallelism, or reversal”. More simply, homoplasy is the recurrence of similarity in evolution (Sanderson and Hufford, 1996).

Paleobiology ◽  
1983 ◽  
Vol 9 (2) ◽  
pp. 138-149 ◽  
Author(s):  
Deborah K. Meinke ◽  
Keith Stewart Thomson

Teeth and other dermal skeletal elements from three osteolepid and two eusthenopterid rhipidistians were examined with the scanning electron microscope to establish whether the hypermineralized outer layer was enameloid or enamel. Using Smith's (1978) morphological criteria to infer the developmental history of enamel and enameloid, enamel was found in the teeth and dermal bones of the osteolepids, whereas enameloid was identified in scales. Hyneria and Eusthenopteron teeth also had enamel. As enamel has also been found in teeth of living lungfishes and extant Latimeria, the presence of enamel in tetrapod teeth represents a primitive character retained from a lobe-finned ancestor and is not useful for phylogenetic studies within the lobe-finned/tetrapod group. Shellis and Miles' (1974) hypothesis that the transition from enameloid to enamel occurred via a fairly simple regulatory change is discussed.


1999 ◽  
Vol 67 (10) ◽  
pp. 5091-5099 ◽  
Author(s):  
Sandrine Bach ◽  
Carmen Buchrieser ◽  
Michael Prentice ◽  
Annie Guiyoule ◽  
Tarek Msadek ◽  
...  

ABSTRACT Highly pathogenic strains of Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica are characterized by the possession of a pathogenicity island designated the high-pathogenicity island (HPI). This 35- to 45-kb island carries an iron uptake system named the yersiniabactin locus. While the HPIs ofY. pestis and Y. pseudotuberculosis are subject to high-frequency spontaneous deletion from the chromosome, we were initially unable to obtain HPI-deleted Y. enterocolitica 1B isolates. In the present study, using a positive selection strategy, we identified three HPI-deleted mutants of Y. enterocoliticastrain Ye8081. In these three independent clones, the chromosomal deletion was not limited to the HPI but encompassed a larger DNA fragment of approximately 140 kb. Loss of this fragment, which occurred at a frequency of approximately 5 × 10−7, resulted in the disappearance of several phenotypic traits, such as growth in a minimal medium, hydrolysis ofo-nitrophenyl-β-d-thiogalactopyranoside, Tween esterase activity, and motility, and in a decreased virulence for mice. However, no precise excision of the Ye8081 HPI was observed. To gain more insight into the molecular basis for this phenomenon, the putative machinery of HPI excision in Y. enterocolitica was analyzed and compared to that in Y. pseudotuberculosis. We show that the probable reasons for failure of precise excision of the HPI of Y. enterocolitica Ye8081 are (i) the interruption of the P4-like integrase gene located close to its right-hand boundary by a premature stop codon and (ii) lack of conservation of 17-bpatt-like sequences at both extremities of the HPI. These mutations may represent a process of HPI stabilization in the speciesY. enterocolitica.


Author(s):  
Henri van Kruistum ◽  
Reindert Nijland ◽  
David N Reznick ◽  
Martien A M Groenen ◽  
Hendrik-Jan Megens ◽  
...  

Abstract The evolutionary origin of complex organs challenges empirical study because most organs evolved hundreds of millions of years ago. The placenta of live-bearing fish in the family Poeciliidae represents a unique opportunity to study the evolutionary origin of complex organs, because in this family a placenta evolved at least nine times independently. It is currently unknown whether this repeated evolution is accompanied by similar, repeated, genomic changes in placental species. Here, we compare whole genomes of 26 poeciliid species representing six out of nine independent origins of placentation. Evolutionary rate analysis revealed that the evolution of the placenta coincides with convergent shifts in the evolutionary rate of 78 protein-coding genes, mainly observed in transporter- and vesicle-located genes. Furthermore, differences in sequence conservation showed that placental evolution coincided with similar changes in 76 noncoding regulatory elements, occurring primarily around genes that regulate development. The unexpected high occurrence of GATA simple repeats in the regulatory elements suggests an important function for GATA repeats in developmental gene regulation. The distinction in molecular evolution observed, with protein-coding parallel changes more often found in metabolic and structural pathways, compared with regulatory change more frequently found in developmental pathways, offers a compelling model for complex trait evolution in general: changing the regulation of otherwise highly conserved developmental genes may allow for the evolution of complex traits.


2017 ◽  
Vol 95 (3) ◽  
pp. 345 ◽  
Author(s):  
Azalea Guerra García ◽  
Daniel Piñero

<p>Background: The domestication process has left signatures in the genomes of domesticated species. Before the existence of molecular markers, only phenotypic traits could be used in domestication studies and breeding programs, but these approaches required long time and effort. In the last decades, the use of molecular markers dramatically increased, and the development of massive sequencing tools have enable to obtain thousands or even millions of molecular markers. This work focuses on domesticated plants and the main goal is to bring a general and an integrative perspective of the data, approaches and questions that can be answered using massive sequencing tools, compared to classic genetic data.</p><p>Results: The use of molecular markers in the last decades has increased the efficiency and accuracy of plant breeding, allowing to access information about domestication history and to identify genes affected by domestication. Some patterns have been identified: (1) genetic diversity reduction due to demographic bottlenecks and artificial selection; (2) frequently, mutations related with domestication syndrome preexisted at low frequency in natural populations; (3) accumulation of deleterious mutation; (4) gene flow between wild and cultivated populations. There are several approaches that can be used in massive sequencing tools: <em>de novo</em> genome sequencing, whole genome resequencing, reduction of genome complexity using restriction enzymes, transcriptome analysis and epigenetic studies.</p>Conclusions: Despite the progress made, enormous challenges still remain: storage of large databases; development of fast, accurate and high throughput strategies to phenotype; identification of paralogous genes in polyploid species; and the analysis of large and highly diverse genomes.


MRS Advances ◽  
2018 ◽  
Vol 3 (6-7) ◽  
pp. 385-390 ◽  
Author(s):  
S. Mamedov ◽  
N. Drichko

AbstractAs2S3 is a semiconductor, which is known as a layer crystal with structure that is very similar to the metal chalcogenides, such as MoS2 and graphite. In such crystalline structure, the molecular unit is extended in two dimensions indefinitely. The unit cell of As2S3 contains two layers with bond length of 2.24A within the layer and 3.56A between the layers. Large difference between interlayer and intralayer bond length corresponds to a significant difference in bond strengths. The weak bonding between layers primarily occurs via van der Waals interactions. Optical phonons in 2D layer crystal As2S3 have been investigated by Raman scattering in temperature range of 4K-270K in two polarizations in the layer plane (ac plane). Our experimental data shows strong polarization dependence of Raman bands in ac plane for internal mode (intra-layer interactions). Additionally, it presents low frequency band, due to the weak inter-layer interaction. The important evidence for the dominance of layer symmetry with very weak interaction between the layers provides understanding of structural motives of As2S3 and may predict optical / electronic properties of similar 2D materials.


Development ◽  
2000 ◽  
Vol 127 (4) ◽  
pp. 755-767 ◽  
Author(s):  
P.J. Roy ◽  
H. Zheng ◽  
C.E. Warren ◽  
J.G. Culotti

The Semaphorins are a family of secreted and transmembrane proteins known to elicit growth cone repulsion and collapse. We made and characterized a putative null mutant of the C. elegans gene semaphorin-2a (Ce-sema-2a). This mutant failed to complement mutants of mab-20 (Baird, S. E., Fitch, D. H., Kassem, I. A. A. and Emmons, S. W. (1991) Development 113, 515–526). In addition to low-frequency axon guidance errors, mab-20 mutants have unexpected defects in epidermal morphogenesis. Errant epidermal cell migrations affect epidermal enclosure of the embryo, body shape and sensory rays of the male tail. These phenotypic traits are explained by the formation of inappropriate contacts between cells of similar type and suggest that Ce-Sema-2a may normally prevent formation or stabilization of ectopic adhesive contacts between these cells.


1992 ◽  
Vol 6 ◽  
pp. 128-128 ◽  
Author(s):  
Leo J. Hickey ◽  
David W. Taylor

Lately, we proposed a hypothesis that the ancestral angiosperm was a diminutive, rhizomatous to scrambling perennial herb with small simple flowers. Our phylogenetic studies suggest that arborescent to shrubby magnolialians with large, multiparted, complex flowers are derived, rather ancestral as commonly thought. We suggest that the early angiosperm, due to its rhizomatous habit, would have been able to survive in more ephemeral habitats. A test of this idea would be to examine the sedimentological context of early angiosperms.Despite a number of reports of early angiosperm megafossils from Barremian to middle Albian (mid- to late Early Cretaceous) age sediments, only the Potomac Group of the eastern U.S.A. has provided a stratigraphic sequence of early angiosperm diversification. Furthermore, study of this sequence has also linked observations on floristic assemblages to the lithofacies in which they occur, leading Doyle and Hickey to report an ecological expansion of early angiosperms from relatively near-channel environments to a much broader range of flood plain sites during the Barremian/Aptin to latest Albian/early Cenomanian interval represented by Potomac Group deposition. From this those authors inferred that the early angiosperms were “riparian weeds” that grew on moderately unstable, near-channel sites subject to periodic flooding and episodes of alluviation.We recently expanded on these inferences by examining the sedimentology of Dutch Gap, an early angiosperm site at the earliest level of the Potomac Group (Barremain/Aptian-Pollen Zone I) near Richmond, VA. Sediments here appear to represent the meander belt of a fluvial setting. A series of multi-storied channel units at the site are filled with arkosic, medium to coarse, sub-angular sand with pebble- to boulder-size clasts of gneiss, claystone and mudstone concentrated at channel bases, reactivation surfaces, and on lateral accretion surfaces. These channels are cut into inferred levee and splay deposits that consist of thin interbeds of sand and silt alternating with dark grey, micaceous mudstone to claystone. This sequence fines in an inferred distal direction from the channels and the mudstone/claystone interbeds thicken at the expense of the coarser units until they coalesce into relatively thick, dark grey clay beds with only thin silty laminae. These beds are thought to represent floodbasin deposits.The megafossil plants recovered from our studies at Dutch Gap exhibit a clear pattern of association with each other and with these lithofacies. Angiosperms (Celastrophyllum, Rogersia, and an unnamed new form) together with ferns are found in relatively silty interbeds that lie in what appear to be distal levee settings, while the backswamp was dominated by the bennittitalean Dioonites buchianus. Conifers of diverse kinds are dominant only in pinkish, silty clay clasts that are inferred to have been transported from drier flood-plain environments.This study provides added evidence of an association between early angiosperms and moderately unstable, channel-margin sites and, in addition, calls attention to the potential that detailed sedimentological investigations have of providing important evidence on early angiosperm paleoecology.


2020 ◽  
Author(s):  
Bruno C. Genevcius ◽  
Caroline Greve ◽  
Samantha Koehler ◽  
Rebecca B. Simmons ◽  
David A. Rider ◽  
...  

ABSTRACTPentatomidae is the third largest family of true bugs, comprising over 40 tribes. Few tribes have been studied in a phylogenetic context, and none of them have been examined using molecular data. Moreover, little is known about the evolution of key morphological characters widely used in taxonomic and phylogenetic studies at multiple levels. Here, we conduct a phylogenetic study of the tribe Chlorocorini (Pentatominae) combining 69 morphological characters and five DNA loci. We use the inferred phylogeny to reconstruct the evolution of key morphological characters such as the spined humeral angles of the pronotum, a dorsal projection on the apices of the femora and characters of male genitalia. We provide solid evidence that the tribe as currently recognized is not monophyletic based both on DNA and morphological data. The genera Arvelius Spinola and Eludocoris Thomas were consistently placed outside of the Chlorocorini, while the remaining genera were found to form a monophyletic group. We also show that nearly all morphological diagnostic characters for the tribe are homoplastic. The only exception is the development of the hypandrium, which, contrary to expectations for genital traits, showed the slowest evolutionary rates. In contrast, the most rapidly evolving trait is the length of the ostiolar ruga, which may be attributed to selection favoring anti-predatory behavior and other functions of its associated scent glands. Lastly, we also provide a preliminary glimpse of the main phylogenetic relationships within the Pentatomidae, which indicates that most of the included subfamilies and tribes are not monophyletic. Our results suggest that the current subfamily-level classification of Pentatomidae is not adequate to reflect its evolutionary history, and we urge for a more complete phylogeny of the family.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Author(s):  
Robert E. Nordquist ◽  
J. Hill Anglin ◽  
Michael P. Lerner

A human breast carcinoma cell line (BOT-2) was derived from an infiltrating duct carcinoma (1). These cells were shown to have antigens that selectively bound antibodies from breast cancer patient sera (2). Furthermore, these tumor specific antigens could be removed from the living cells by low frequency sonication and have been partially characterized (3). These proteins have been shown to be around 100,000 MW and contain approximately 6% hexose and hexosamines. However, only the hexosamines appear to be available for lectin binding. This study was designed to use Concanavalin A (Con A) and Ricinus Communis (Ricin) agglutinin for the topagraphical localization of D-mannopyranosyl or glucopyranosyl and D-galactopyranosyl or DN- acetyl glactopyranosyl configurations on BOT-2 cell surfaces.


Sign in / Sign up

Export Citation Format

Share Document