The Evolution of Cooperation in an Ecological Context : An Agent-Based Model

Author(s):  
John W. Pepper ◽  
Barbara B. Smuts

The social and behavioral sciences have a long-standing interest in the factors that foster selfish (or individualistic) versus altruistic (or cooperative) behavior. Since the 1960s, evolutionary biologists have also devoted considerable attention to this issue. In the last 25 years, mathematical models (reviewed in Wilson and Sober 1994) have shown that, under particular demographic conditions, natural selection can favor traits that benefit group members as a whole, even when the bearers of those traits experience reduced reproductive success relative to other members of their group. This process, often referred to as "trait group selection" (D. S. Wilson 1975) can occur when the population consists of numerous, relatively small "trait groups," defined as collections of individuals who influence one another's fitness as a result of the trait in question. For example, consider a cooperative trait such as alarm calling, which benefits only individuals near the alarm caller. A trait group would include all individuals whose fitness depends on whether or not a given individual gives an alarm call. If the cooperative trait confers sufficiently large reproductive benefits on the average group member, it can spread. This is because trait groups that happen to include a large proportion of cooperators will send out many more offspring into the population as a whole than will groups containing few, or no cooperators. Thus, even though noncooperators out reproduce cooperators within trait groups (because they experience the benefits of the presence of cooperators without incurring the costs), this advantage can be offset by differences in rates of reproduction between trait groups. Numerous models of group selection (Wilson and Sober 1994) show that whether cooperative traits can spread depends on the relative magnitude of fitness effects at these two levels of selection (within and between trait groups). In addition, there is a growing body of empirical evidence for the operation of group selection in nature (e.g., Colwell 1981; Breden and Wade 1989; Bourke and Pranks 1995; Stevens et al. 1995; Seeley 1996; Miralles et al. 1997; Brookfield 1998) and under experimental conditions (reviewed in Goodnight and Stevens 1997).

2014 ◽  
Vol 17 (03n04) ◽  
pp. 1450015
Author(s):  
MARCO A. JANSSEN ◽  
MILES MANNING ◽  
OYITA UDIANI

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment, we use a utilitarian formulation of agent decision making to explore conditions that support the emergence of cooperative behavior. Our results indicate that cooperation levels are significantly lower for larger groups in contrast to the original pure strategy model. Here, defection behavior not only diminishes the public good, but also affects the expectations of group members leading conditional co-operators to change their strategies. Hence defection has a more damaging effect when decisions are based on expectations and not only pure strategies.


2013 ◽  
Vol 36 (1) ◽  
pp. 89-90 ◽  
Author(s):  
Daniel M. T. Fessler ◽  
Colin Holbrook

AbstractMarket models are indeed indispensable to understanding the evolution of cooperation and its emotional substrates. Unfortunately, Baumard et al. eschew market thinking in stressing the supposed invariance of moral/cooperative behavior across circumstances. To the contrary, humans display contingent morality/cooperation, and these shifts are best accounted for by market models of partner choice for mutually beneficial collaboration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hirotaka Imada ◽  
Nobuhiro Mifune

Disease-causing parasites and pathogens play a pivotal role in intergroup behavior. Previous studies have suggested that the selection pressure posed by pathogen threat has resulted in in-group assortative sociality, including xenophobia and in-group favoritism. While the current literature has collated numerous studies on the former, strikingly, there has not been much research on the relationship between pathogen threat and in-group cooperation. Drawing upon prior studies on the function of the behavioral immune system (BIS), we argued that the BIS might facilitate cooperation with in-group members as a reactive behavioral immune response to pathogen threat. More specifically, we held that individuals might utilize cooperative behavior to ensure that they can receive social support when they have contracted an infectious disease. We reviewed existing findings pertaining to the potential role of the BIS in in-group cooperation and discussed directions for future studies.


2012 ◽  
Vol 20 (2) ◽  
pp. 301-319 ◽  
Author(s):  
Shade T. Shutters

Altruistic punishment occurs when an agent incurs a cost to punish another but receives no material benefit for doing so. Despite the seeming irrationality of such behavior, humans in laboratory settings routinely pay to punish others even in anonymous, one-shot settings. Costly punishment is ubiquitous among social organisms in general and is increasingly accepted as a mechanism for the evolution of cooperation. Yet if it is true that punishment explains cooperation, the evolution of altruistic punishment remains a mystery. In a series of computer simulations I give agents the ability to punish one another while playing a continuous prisoner's dilemma. In simulations without social structure, expected behavior evolves—agents do not punish and consequently no cooperation evolves. Likewise, in simulations with social structure but no ability to punish, no cooperation evolves. However, in simulations where agents are both embedded in a social structure and have the option to inflict costly punishment, cooperation evolves quite readily. This suggests a simple and broadly applicable explanation of cooperation for social organisms that have nonrandom social structure and a predisposition to punish one another. Results with scale-free networks further suggest that nodal degree distribution plays an important role in determining whether cooperation will evolve in a structured population.


2021 ◽  
pp. 72-108
Author(s):  
Jan Fuhse

Social groups were a key concept in early sociology (German formal sociology, symbolic interactionism). Since the 1960s, they have been replaced by “social network” as the prime concept for informal social structures. We rarely find the bounded and internally homogeneous social units suggested by the group concept in the real world. Instead, individuals are embedded in a complex mesh of social relationships. Building on relational sociology, we can reconceptualize groups as a particular case of densely connected network patterns of social relationships. These exist only by degree, to the extent that they are reinforced by a social boundary separating the group members symbolically from the outside world and by foci of activity for the group to meet. Densely connected groups develop a particular group culture, and they frequently use symbols to signal group membership and the cultural difference to other groups and to the wider cultural context (group style).


2019 ◽  
Vol 30 (6) ◽  
pp. 1558-1566 ◽  
Author(s):  
Ramona Rauber ◽  
Tim H Clutton-Brock ◽  
Marta B Manser

Abstract Cooperative breeding often evolved in harsh and arid habitats characterized by high levels of environmental uncertainty. Most forms of cooperative behavior have energetic costs and previous studies have shown that the contributions of individuals to alloparental provisioning are conditional on their food intake. However, the effect of naturally occurring, extreme environmental conditions on the persistence of costly forms of cooperative behaviors and their coordination by communication remain unknown. Here, we show that in meerkats (Suricata suricatta) the probability to act as sentinel, a cooperative vigilance behavior, was the same for typically occurring dry and wet conditions, but significantly reduced during a drought condition with almost no rain, especially in young individuals, members of small groups and groups with pups. The duration an individual stayed on sentinel guard, however, was most reduced during dry conditions. Besides reductions in sentinel behavior, the vocal coordination of foraging meerkats differed when comparing drought and wet conditions. Individuals responded more strongly to playbacks of sentinel “all-clear” calls and close calls, resulting in less vigilance and more foraging behavior during the drought condition. We conclude that while meerkats are adapted to commonly occurring dry periods with low rainfall, the extreme drought period with almost no rain, led to a decrease of the frequency of costly forms of cooperative behaviors in favor of behaviors that maximize direct fitness benefits and also affected the vocal coordination among group members.


1995 ◽  
Vol 3 (3) ◽  
pp. 349-363 ◽  
Author(s):  
David B. Fogel

Evolutionary programming experiments are conducted to examine the relationship between the durations of encounters and the evolution of cooperative behavior in the iterated prisoner's dilemma. A population of behavioral strategies represented by finite-state machines is evolved over successive generations, with selection made on the basis of individual fitness. Each finite-state machine is given an additional evolvable parameter corresponding to the maximum number of moves it will execute in any encounter. A series of Monte Carlo trials indicates distinct relationships between encounter length and cooperation; however, no causal relationship can be positively identified.


2008 ◽  
Vol 4 (5) ◽  
pp. 472-475 ◽  
Author(s):  
Sarah Papworth ◽  
Anne-Sophie Böse ◽  
Jessica Barker ◽  
Anne Marijke Schel ◽  
Klaus Zuberbühler

Male blue monkeys ( Cercopithecus mitis stuhlmanni ) of Budongo Forest, Uganda, produce two acoustically distinct alarm calls: hacks to crowned eagles ( Stephanoaetus coronatus ) and pyows to leopards ( Panthera pardus ) and a range of other disturbances. In playback experiments, males responded to leopard growls exclusively with a series of pyows and to eagle shrieks predominantly with hacks. Responses to playbacks of these alarm call series matched the responses to the corresponding predators, suggesting that the calls conveyed something about the nature of the threat. When responding to a series of hacks, indicating an eagle, males responded predominately with hacks, but produced significantly more calls if their group members were close to the playback stimulus than far away, regardless of their own position. When responding to a series of pyows, indicating a range of disturbances, males responded with pyows, but call rates were independent of the distance of other group members. The results suggest that males took into account the degree of danger experienced by other group members.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3064
Author(s):  
Sebastian Schneider ◽  
Sarah Goettlich ◽  
Charlette Diercks ◽  
Paul Wilhelm Dierkes

Animals living in human care for several generations face the risk of losing natural behaviors, which can lead to reduced animal welfare. The goal of this study is to demonstrate that meerkats (Suricata suricatta) living in zoos can assess potential danger and respond naturally based on acoustic signals only. This includes that the graded information of urgency in alarm calls as well as a response to those alarm calls is retained in captivity. To test the response to acoustic signals with different threat potential, meerkats were played calls of various animals differing in size and threat (e.g., robin, raven, buzzard, jackal) while their behavior was observed. The emitted alarm calls were recorded and examined for their graded structure on the one hand and played back to them on the other hand by means of a playback experiment to see whether the animals react to their own alarm calls even in the absence of danger. A fuzzy clustering algorithm was used to analyze and classify the alarm calls. Subsequently, the features that best described the graded structure were isolated using the LASSO algorithm and compared to features already known from wild meerkats. The results show that the graded structure is maintained in captivity and can be described by features such as noise and duration. The animals respond to new threats and can distinguish animal calls that are dangerous to them from those that are not, indicating the preservation of natural cooperative behavior. In addition, the playback experiments show that the meerkats respond to their own alarm calls with vigilance and escape behavior. The findings can be used to draw conclusions about the intensity of alertness in captive meerkats and to adapt husbandry conditions to appropriate welfare.


Sign in / Sign up

Export Citation Format

Share Document