Signal Recovery

Author(s):  
Robert J Marks II

The literature on the recovery of signals and images is vast (e.g., [23, 110, 112, 257, 391, 439, 791, 795, 933, 934, 937, 945, 956, 1104, 1324, 1494, 1495, 1551]). In this Chapter, the specific problem of recovering lost signal intervals from the remaining known portion of the signal is considered. Signal recovery is also a topic of Chapter 11 on POCS. To this point, sampling has been discrete. Bandlimited signals, we will show, can also be recovered from continuous samples. Our definition of continuous sampling is best presented by illustration.Asignal, f (t), is shown in Figure 10.1a, along with some possible continuous samples. Regaining f (t) from knowledge of ge(t) = f (t)Π(t/T) in Figure 10.1b is the extrapolation problem which has applications in a number of fields. In optics, for example, extrapolation in the frequency domain is termed super resolution [2, 40, 367, 444, 500, 523, 641, 720, 864, 1016, 1099, 1117]. Reconstructing f (t) from its tails [i.e., gi(t) = f (t){1 − Π(t/T)}] is the interval interpolation problem. Prediction, shown in Figure 10.1d, is the problem of recovering a signal with knowledge of that signal only for negative time. Lastly, illustrated in Figure 10.1e, is periodic continuous sampling. Here, the signal is known in sections periodically spaced at intervals of T. The duty cycle is α. Reconstruction of f (t) from this data includes a number of important reconstruction problems as special cases. (a) By keeping αT constant, we can approach the extrapolation problem by letting T go to ∞. (b) Redefine the origin in Figure 10.1e to be centered in a zero interval. Under the same assumption as (a), we can similarly approach the interpolation problem. (c) Redefine the origin as in (b). Then the interpolation problem can be solved by discarding data to make it periodically sampled. (d) Keep T constant and let α → 0. The result is reconstructing f (t) from discrete samples as discussed in Chapter 5. Indeed, this model has been used to derive the sampling theorem [246]. Figures 10.1b-e all illustrate continuously sampled versions of f (t).

Author(s):  
Dafang Zhao ◽  
Muhammad Aamir Ali ◽  
Artion Kashuri ◽  
Hüseyin Budak ◽  
Mehmet Zeki Sarikaya

Abstract In this paper, we present a new definition of interval-valued convex functions depending on the given function which is called “interval-valued approximately h-convex functions”. We establish some inequalities of Hermite–Hadamard type for a newly defined class of functions by using generalized fractional integrals. Our new inequalities are the extensions of previously obtained results like (D.F. Zhao et al. in J. Inequal. Appl. 2018(1):302, 2018 and H. Budak et al. in Proc. Am. Math. Soc., 2019). We also discussed some special cases from our main results.


1999 ◽  
Vol 9 (5) ◽  
pp. 545-567 ◽  
Author(s):  
LAWRENCE C. PAULSON

A special final coalgebra theorem, in the style of Aczel (1988), is proved within standard Zermelo–Fraenkel set theory. Aczel's Anti-Foundation Axiom is replaced by a variant definition of function that admits non-well-founded constructions. Variant ordered pairs and tuples, of possibly infinite length, are special cases of variant functions. Analogues of Aczel's solution and substitution lemmas are proved in the style of Rutten and Turi (1993). The approach is less general than Aczel's, but the treatment of non-well-founded objects is simple and concrete. The final coalgebra of a functor is its greatest fixedpoint.Compared with previous work (Paulson, 1995a), iterated substitutions and solutions are considered, as well as final coalgebras defined with respect to parameters. The disjoint sum construction is replaced by a smoother treatment of urelements that simplifies many of the derivations.The theory facilitates machine implementation of recursive definitions by letting both inductive and coinductive definitions be represented as fixed points. It has already been applied to the theorem prover Isabelle (Paulson, 1994).


Author(s):  
Raffaele Di Gregorio ◽  
Alessandro Cammarata ◽  
Rosario Sinatra

The comparison of mechanisms with different topology or with different geometry, but with the same topology, is a necessary operation during the design of a machine sized for a given task. Therefore, tools that evaluate the dynamic performances of a mechanism are welcomed. This paper deals with the dynamic isotropy of 2-dof mechanisms starting from the definition introduced in a previous paper. In particular, starting from the condition that identifies the dynamically isotropic configurations, it shows that, provided some special cases are not considered, 2-dof mechanisms have at most a finite number of isotropic configurations. Moreover, it shows that, provided the dynamically isotropic configurations are excluded, the geometric locus of the configuration space that collects the points associated to configurations with the same dynamic isotropy is constituted by closed curves. This results will allow the classification of 2-dof mechanisms from the dynamic-isotropy point of view, and the definition of some methodologies for the characterization of the dynamic isotropy of these mechanisms. Finally, examples of applications of the obtained results will be given.


Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. SM77-SM93 ◽  
Author(s):  
Tim T. Lin ◽  
Felix J. Herrmann

An explicit algorithm for the extrapolation of one-way wavefields is proposed that combines recent developments in information theory and theoretical signal processing with the physics of wave propagation. Because of excessive memory requirements, explicit formulations for wave propagation have proven to be a challenge in 3D. By using ideas from compressed sensing, we are able to formulate the (inverse) wavefield extrapolation problem on small subsets of the data volume, thereby reducing the size of the operators. Compressed sensing entails a new paradigm for signal recovery that provides conditions under which signals can be recovered from incomplete samplings by nonlinear recovery methods that promote sparsity of the to-be-recovered signal. According to this theory, signals can be successfully recovered when the measurement basis is incoherent with the representa-tion in which the wavefield is sparse. In this new approach, the eigenfunctions of the Helmholtz operator are recognized as a basis that is incoherent with curvelets that are known to compress seismic wavefields. By casting the wavefield extrapolation problem in this framework, wavefields can be successfully extrapolated in the modal domain, despite evanescent wave modes. The degree to which the wavefield can be recovered depends on the number of missing (evanescent) wavemodes and on the complexity of the wavefield. A proof of principle for the compressed sensing method is given for inverse wavefield extrapolation in 2D, together with a pathway to 3D during which the multiscale and multiangular properties of curvelets, in relation to the Helmholz operator, are exploited. The results show that our method is stable, has reduced dip limitations, and handles evanescent waves in inverse extrapolation.


2017 ◽  
Vol 20 (K2) ◽  
pp. 131-140
Author(s):  
Linh Manh Ha

Knaster-Kuratowski-Mazurkiewicz type theorems play an important role in nonlinear analysis, optimization, and applied mathematics. Since the first well-known result, many international efforts have been made to develop sufficient conditions for the existence of points intersection (and their applications) in increasingly general settings: Gconvex spaces [21, 23], L-convex spaces [12], and FCspaces [8, 9]. Applications of Knaster-Kuratowski-Mazurkiewicz type theorems, especially in existence studies for variational inequalities, equilibrium problems and more general settings have been obtained by many authors, see e.g. recent papers [1, 2, 3, 8, 18, 24, 26] and the references therein. In this paper we propose a definition of generalized KnasterKuratowski-Mazurkiewicz mappings to encompass R-KKM mappings [5], L-KKM mappings [11], T-KKM mappings [18, 19], and many recent existing mappings. Knaster-KuratowskiMazurkiewicz type theorems are established in general topological spaces to generalize known results. As applications, we develop in detail general types of minimax theorems. Our results are shown to improve or include as special cases several recent ones in the literature.


2010 ◽  
Vol 2010 ◽  
pp. 1-22 ◽  
Author(s):  
Carlo Cattani

Shannon wavelets are used to define a method for the solution of integrodifferential equations. This method is based on (1) the Galerking method, (2) the Shannon wavelet representation, (3) the decorrelation of the generalized Shannon sampling theorem, and (4) the definition of connection coefficients. The Shannon sampling theorem is considered in a more general approach suitable for analysing functions ranging in multifrequency bands. This generalization coincides with the Shannon wavelet reconstruction ofL2(ℝ)functions. Shannon wavelets areC∞-functions and their any order derivatives can be analytically defined by some kind of a finite hypergeometric series (connection coefficients).


Author(s):  
John Stillwell

This chapter develops the basic results of computability theory, many of which are about noncomputable sequences and sets, with the goal of revealing the limits of computable analysis. Two of the key examples are a bounded computable sequence of rational numbers whose limit is not computable, and a computable tree with no computable infinite path. Computability is an unusual mathematical concept, because it is most easily used in an informal way. One often talks about it in terms of human activities, such as making lists, rather than by applying a precise definition. Nevertheless, there is a precise definition of computability, so this informal description of computations can be formalized.


Author(s):  
Anna L. Bailey

In the mid-2000s a new small but influential anti-alcohol movement emerged: an alliance of key members of a civil society elite including the Russian Orthodox Church, Public Chamber and public health professionals. Chapter 11 shows how this new elite was able to seize cultural authority over the definition of the “alcohol problem”, and thus set the anti-alcohol agenda where previous attempts by public health lobbyists had failed.


2017 ◽  
Vol 29 (04) ◽  
pp. 1750014 ◽  
Author(s):  
Michał Wrochna ◽  
Jochen Zahn

We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove that it is isomorphic to the phase space in the ‘subsidiary condition’ approach of Hack and Schenkel in the case of Maxwell, Yang–Mills, and Rarita–Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang–Mills case is concluded from known results in the subsidiary condition (or Gupta–Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang–Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.


An analysis is given for the deformation of a cantilever made from a rigid-plastic material struck transversely at its tip by a moving mass. Two special cases are found to be of interest: mass of striker large, and mass of striker small. Experiments were carried out on model mildsteel cantilevers under these two extreme conditions: in the one case the striker was a falling weight, in the other a rifle bullet. The theoretical and experimental results are compared, and it is shown that there is good agreement at points remote from the impact, but that prediction of local damage depends on accurate definition of the conditions of striking.


Sign in / Sign up

Export Citation Format

Share Document