An Eye for the Impossible

2021 ◽  
pp. 203-207
Author(s):  
Emily S. Cross

The embodied simulation account of aesthetics, proposed by Freedberg and Gallese, assigns a pivotal role to an observer’s body in aesthetic appreciation of an artwork. While originally focused on visual artworks (such as paintings and sculpture), this theory clearly also holds great relevance to the performing arts, in particular dance. In this chapter, the author describes how she was inspired by this theory, as well as earlier work using dance as stimuli and dancers as participants to explore the relationship between embodiment, perception, and brain activity from a non-artistic perspective, to examine how observers’ physical abilities (or lack thereof) shape dance preferences. The author describes her team’s work demonstrating that dance-naïve participants are most drawn to highly complex, impressive dance movements impossible for observers to embody or perform themselves and how engagement of brain regions implicated in translating perception into action appear to be involved in this process.

2021 ◽  
Author(s):  
Trung Quang Pham ◽  
Takaaki Yoshimoto ◽  
Haruki Niwa ◽  
Haruka K Takahashi ◽  
Ryutaro Uchiyama ◽  
...  

AbstractHumans and now computers can derive subjective valuations from sensory events although such transformation process is essentially unknown. In this study, we elucidated unknown neural mechanisms by comparing convolutional neural networks (CNNs) to their corresponding representations in humans. Specifically, we optimized CNNs to predict aesthetic valuations of paintings and examined the relationship between the CNN representations and brain activity via multivoxel pattern analysis. Primary visual cortex and higher association cortex activities were similar to computations in shallow CNN layers and deeper layers, respectively. The vision-to-value transformation is hence proved to be a hierarchical process which is consistent with the principal gradient that connects unimodal to transmodal brain regions (i.e. default mode network). The activity of the frontal and parietal cortices was approximated by goal-driven CNN. Consequently, representations of the hidden layers of CNNs can be understood and visualized by their correspondence with brain activity–facilitating parallels between artificial intelligence and neuroscience.


2017 ◽  
Author(s):  
Janine D. Bijsterbosch ◽  
Mark W. Woolrich ◽  
Matthew F. Glasser ◽  
Emma C. Robinson ◽  
Christian F. Beckmann ◽  
...  

AbstractBrain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behavior. For example, studies have used "functional connectivity fingerprints" to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits.


2021 ◽  
pp. 199-202
Author(s):  
Beatriz Calvo-Merino

The article reviewed in this chapter discusses how questions initially originated in cognitive neuroscience can be answered with collaborations with nonscientific disciplines, such as performing arts. The author describes the first study that showed dancer’s brain activity when observing dance movements. By investigating how the expert brain works, they demonstrated the important role of sensorimotor processing for movement perception, emotion perception, and aesthetic judgment. This work opened a channel of communication between neuroscientists and performing artists, enabling conversations that have generated novel questions of interest to both disciplines. The chapter discusses three fundamental insights: the importance of prior experience for perception, the importance of motor representations for perception, and the existence of a system for embodied aesthetics. Finally, the author provides some consideration on neuroscientists’ capacity to dissect the aesthetic experience and how this knowledge can be absorbed by the performing artist during the artistic and choreographic process.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Janine Diane Bijsterbosch ◽  
Mark W Woolrich ◽  
Matthew F Glasser ◽  
Emma C Robinson ◽  
Christian F Beckmann ◽  
...  

Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used ‘functional connectivity fingerprints’ to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiuping Cheng ◽  
Xue Wen ◽  
Guozhen Ye ◽  
Yanchi Liu ◽  
Yilong Kong ◽  
...  

AbstractMorality judgment usually refers to the evaluation of moral behavior`s ability to affect others` interests and welfare, while moral aesthetic judgment often implies the appraisal of moral behavior's capability to provide aesthetic pleasure. Both are based on the behavioral understanding. To our knowledge, no study has directly compared the brain activity of these two types of judgments. The present study recorded and analyzed brain activity involved in the morality and moral aesthetic judgments to reveal whether these two types of judgments differ in their neural underpinnings. Results reveled that morality judgment activated the frontal, parietal and occipital cortex previously reported for motor representations of behavior. Evaluation of goodness and badness showed similar patterns of activation in these brain regions. In contrast, moral aesthetic judgment elicited specific activations in the frontal, parietal and temporal cortex proved to be involved in the behavioral intentions and emotions. Evaluation of beauty and ugliness showed similar patterns of activation in these brain regions. Our findings indicate that morality judgment and moral aesthetic judgment recruit different cortical networks that might decode others' behaviors at different levels. These results contribute to further understanding of the essence of the relationship between morality judgment and aesthetic judgment.


2011 ◽  
Vol 366 (1571) ◽  
pp. 1684-1701 ◽  
Author(s):  
Andrew J. Calder ◽  
Michael Ewbank ◽  
Luca Passamonti

Cognitive research has long been aware of the relationship between individual differences in personality and performance on behavioural tasks. However, within the field of cognitive neuroscience, the way in which such differences manifest at a neural level has received relatively little attention. We review recent research addressing the relationship between personality traits and the neural response to viewing facial signals of emotion. In one section, we discuss work demonstrating the relationship between anxiety and the amygdala response to facial signals of threat. A second section considers research showing that individual differences in reward drive (behavioural activation system), a trait linked to aggression, influence the neural responsivity and connectivity between brain regions implicated in aggression when viewing facial signals of anger. Finally, we address recent criticisms of the correlational approach to fMRI analyses and conclude that when used appropriately, analyses examining the relationship between personality and brain activity provide a useful tool for understanding the neural basis of facial expression processing and emotion processing in general.


2017 ◽  
Vol 46 (1) ◽  
pp. 392-402 ◽  
Author(s):  
Gang Tan ◽  
Zeng-Renqing Dan ◽  
Ying Zhang ◽  
Xin Huang ◽  
Yu-Lin Zhong ◽  
...  

Objective To investigate the underlying functional network brain-activity changes in patients with adult comitant exotropia strabismus (CES) and the relationship with clinical features using the voxel-wise degree centrality (DC) method. Methods A total of 30 patients with CES (17 men, 13 women), and 30 healthy controls (HCs; 17 men, 13 women) matched in age, sex, and education level participated in the study. DC was used to evaluate spontaneous brain activity. Receiver operating characteristic (ROC) curve analysis was conducted to distinguish CESs from HCs. The relationship between mean DC values in various brain regions and behavioral performance was examined with correlation analysis. Results Compared with HCs, CES patients exhibited decreased DC values in the right cerebellum posterior lobe, right inferior frontal gyrus, right middle frontal gyrus and right superior parietal lobule/primary somatosensory cortex (S1), and increased DC values in the right superior temporal gyrus, bilateral anterior cingulate, right superior temporal gyrus, and left inferior parietal lobule. However, there was no correlation between mean DC values and behavioral performance in any brain regions. Conclusions Adult comitant exotropia strabismus is associated with abnormal brain network activity in various brain regions, possibly reflecting the pathological mechanisms of ocular motility disorders in CES.


2021 ◽  
Author(s):  
Qiuping Cheng ◽  
Xue Wen ◽  
Yanchi Liu ◽  
Lei Mo

Abstract Morality judgment usually refers to the evaluation of moral behavior`s ability to affect others` interests and welfare, while moral aesthetic judgment often implies the appraisal of moral behavior's capability to provide aesthetic pleasure. Both are based on the behavioral understanding. To our knowledge, no study has directly compared the brain activity of these two types of judgments. The present study recorded and analyzed brain activity involved in the morality and moral aesthetic judgments to reveal whether these two types of judgments differ in their neural underpinnings. Results reveled that morality judgment activated the frontal, parietal and occipital cortex previously reported for motor representations of behavior. Evaluation of goodness and badness showed similar patterns of activation in these brain regions. In contrast, moral aesthetic judgment elicited specific activations in the frontal, parietal and temporal cortex proved to be involved in the behavioral intentions and emotions. Evaluation of beauty and ugliness showed similar patterns of activation in these brain regions. Our findings indicate that morality judgment and moral aesthetic judgment recruit different cortical networks that might decode others' behaviors at different levels. These results contribute to further understanding of the essence of the relationship between morality judgment and aesthetic judgment.


2019 ◽  
Vol 9 (2) ◽  
pp. 43
Author(s):  
Megumi Mizuno ◽  
Tomoyuki Hiroyasu ◽  
Satoru Hiwa

The ability to coordinate one’s behavior with the others’ behavior is essential to achieve a joint action in daily life. In this paper, the brain activity during synchronized tapping task was measured using functional near infrared spectroscopy (fNIRS) to investigate the relationship between time coordination and brain function. Furthermore, using brain functional network analysis based on graph theory, we examined important brain regions and network structures that serve as the hub when performing the synchronized tapping task. Using the data clustering method, two types of brain function networks were extracted and associated with time coordination, suggesting that they were involved in expectation and imitation behaviors.


Author(s):  
Liu Yang ◽  
Zhengbing He ◽  
Wei Guan ◽  
Shixiong Jiang

Driving behavior studies based on electroencephalography (EEG) have mostly investigated the relationship between various risky driving behaviors and brain activity, while only a few studies have discussed the relationship between ordinary driving behavior (drivers’ behavior in normal situations) and brain activity. To bridge the gap, we conducted a driving simulator experiment to collect data on ordinary driving behavior, including acceleration, space headway, speed, time headway, lane deviation, and amplitude of steering wheel movements. At the same time, the amplitude, log-transformed power (LTP), and power spectral density of EEG were extracted as EEG features. The quantitative relationships between ordinary driving behavior features and EEG features were investigated, where power spectrum analysis was performed to process EEG signals and Pearson correlation analysis was utilized for statistical analysis. The results indicated that ordinary driving behavior relates to all four brain regions, especially the temporal, occipital, and frontal regions. β-LTP was found to be most relevant to ordinary driving behavior. Furthermore, acceleration, speed, and space headway may have potential correlation with EEG features (e.g., β-LTP). These findings improve our understanding of the correlation between brain activity and driving behavior, and show potential for application in transportation safety, such as advanced driver assistance systems design.


Sign in / Sign up

Export Citation Format

Share Document