scholarly journals Personality influences the neural responses to viewing facial expressions of emotion

2011 ◽  
Vol 366 (1571) ◽  
pp. 1684-1701 ◽  
Author(s):  
Andrew J. Calder ◽  
Michael Ewbank ◽  
Luca Passamonti

Cognitive research has long been aware of the relationship between individual differences in personality and performance on behavioural tasks. However, within the field of cognitive neuroscience, the way in which such differences manifest at a neural level has received relatively little attention. We review recent research addressing the relationship between personality traits and the neural response to viewing facial signals of emotion. In one section, we discuss work demonstrating the relationship between anxiety and the amygdala response to facial signals of threat. A second section considers research showing that individual differences in reward drive (behavioural activation system), a trait linked to aggression, influence the neural responsivity and connectivity between brain regions implicated in aggression when viewing facial signals of anger. Finally, we address recent criticisms of the correlational approach to fMRI analyses and conclude that when used appropriately, analyses examining the relationship between personality and brain activity provide a useful tool for understanding the neural basis of facial expression processing and emotion processing in general.

2020 ◽  
Author(s):  
Mengting Liu ◽  
Robert A Backer ◽  
Rachel C Amey ◽  
Eric E Splan ◽  
Adam Magerman ◽  
...  

Abstract Extensive research has established a relationship between individual differences in brain activity in a resting state and individual differences in behavior. Conversely, when individuals are engaged in various tasks, certain task-evoked reorganization occurs in brain functional connectivity, which can consequently influence individuals’ performance as well. Here, we show that resting state and task-dependent state brain patterns interact as a function of contexts engendering stress. Findings revealed that when the resting state connectome was examined during performance, the relationship between connectome strength and performance only remained for participants under stress (who also performed worse than all other groups on the math task), suggesting that stress preserved brain patterns indicative of underperformance whereas non-stressed individuals spontaneously transitioned out of these patterns. Results imply that stress may impede the reorganization of a functional network in task-evoked brain states. This hypothesis was subsequently verified using graph theory measurements on a functional network, independent of behavior. For participants under stress, the functional network showed less topological alterations compared to non-stressed individuals during the transition from resting state to task-evoked state. Implications are discussed for network dynamics as a function of context.


Author(s):  
Mengting Liu ◽  
Robert A. Backer ◽  
Rachel C. Amey ◽  
Eric E. Splan ◽  
Adam Magerman ◽  
...  

AbstractExtensive research has established the relationship between individual differences in brain activity in a resting state and individual differences in behavior. Conversely, when individuals are engaged in various tasks, certain task-evoked reorganization occurs in brain functional connectivity, which consequently can influence individuals’ performance as well. Here, we show that resting state and task-dependent state brain patterns interact as a function of contexts engendering stress. Findings revealed that when the resting state connectome was examined during performance, the relationship between connectome strength and performance only remained for participants under stress (who also performed worse than all other groups on the math task), suggesting stress preserved brain patterns indicative of underperformance whereas non-stressed individuals spontaneously transitioned out of brain patterns indicative of underperformance. These findings were subsequentially replicated in an independent sample set. Implications are discussed for network dynamics as a function of context.


2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Kristina C. Backer ◽  
Heather Bortfeld

A debate over the past decade has focused on the so-called bilingual advantage—the idea that bilingual and multilingual individuals have enhanced domain-general executive functions, relative to monolinguals, due to competition-induced monitoring of both processing and representation from the task-irrelevant language(s). In this commentary, we consider a recent study by Pot, Keijzer, and de Bot (2018), which focused on the relationship between individual differences in language usage and performance on an executive function task among multilingual older adults. We discuss their approach and findings in light of a more general movement towards embracing complexity in this domain of research, including individuals’ sociocultural context and position in the lifespan. The field increasingly considers interactions between bilingualism/multilingualism and cognition, employing measures of language use well beyond the early dichotomous perspectives on language background. Moreover, new measures of bilingualism and analytical approaches are helping researchers interrogate the complexities of specific processing issues. Indeed, our review of the bilingualism/multilingualism literature confirms the increased appreciation researchers have for the range of factors—beyond whether someone speaks one, two, or more languages—that impact specific cognitive processes. Here, we highlight some of the most salient of these, and incorporate suggestions for a way forward that likewise encompasses neural perspectives on the topic.


2017 ◽  
Vol 12 (7) ◽  
pp. 864-871
Author(s):  
Homero Gustavo Ferrari ◽  
Leonardo H.D. Messias ◽  
Ivan G.M. Reis ◽  
Claudio A. Gobatto ◽  
Filipe A.B. Sousa ◽  
...  

Background:Among other aspects, aerobic fitness is indispensable for performance in slalom canoe.Purpose:To propose the maximal-lactate steady-state (MLSS) and critical-force (CF) tests using a tethered canoe system as new strategies for aerobic evaluation in elite slalom kayakers. In addition, the relationship between the aerobic parameters from these tests and the kayakers’ performances was studied.Methods:Twelve male elite slalom kayakers from the Brazilian national team participated in this study. All tests were conducted using a tethered canoe system to obtain the force records. The CF test was applied on 4 d and analyzed by hyperbolic (CFhyper) and linear (CFlin) mathematical models. The MLSS intensity (MLSSint) was obtained by three 30-min continuous tests. The time of a simulated race was considered the performance index.Results:No difference (P < .05) between CFhyper (65.9 ± 1.6 N) and MLSSint (60.3 ± 2.5 N) was observed; however, CFlin (71.1 ± 1.7 N) was higher than MLSSint. An inverse and significant correlation was obtained between MLSSint and performance (r = –.67, P < .05).Conclusion:In summary, MLSS and CF tests on a tethered canoe system may be used for aerobic assessment of elite slalom kayakers. In addition, CFhyper may be used as an alternative low-cost and noninvasive method to estimate MLSSint, which is related with slalom kayakers’ performance.


2020 ◽  
pp. 136700692095288
Author(s):  
Sha Xie ◽  
Dandan Wu ◽  
Jinfeng Yang ◽  
Jiutong Luo ◽  
Chunqi Chang ◽  
...  

Aims: The present study aims to examine: (1) the relationship between young children’s bilingualism and their performance in the Dimensional Card Change Sort (DCCS) task; and (2) whether prefrontal activation was associated with children’s bilingualism and executive function. Methodology: Children performed three sessions of the DCCS and their brain activity during the task was measured using functional nearinfrared spectroscopy (fNIRS). Data and analysis: A sample of bilingual children ( N = 49) was recruited from a preschool with an English immersion program. We examined whether children’s performance in the DCCS was related to their bilingualism and whether the changes in oxygenated hemoglobin in the prefrontal regions were related to their bilingualism and performance in the DCCS. Findings/conclusions: Results showed that children’s English ability was significantly correlated with their behavioral performance in DCCS, and predicted children’s group membership (pass or perseverate). Furthermore, children in the pass group significantly activated the prefrontal cortex than those in the perseverate group, and activation in the prefrontal region was significantly correlated with children’s English ability. Originality: The current study first examined the effect of children’s bilingualism on their executive function and prefrontal activation.


2019 ◽  
Vol 6 (3) ◽  
pp. 181908 ◽  
Author(s):  
Steven Brown ◽  
Peter Cockett ◽  
Ye Yuan

The current study represents a first attempt at examining the neural basis of dramatic acting. While all people play multiple roles in daily life—for example, ‘spouse' or ‘employee'—these roles are all facets of the ‘self' and thus of the first-person (1P) perspective. Compared to such everyday role playing, actors are required to portray other people and to adopt their gestures, emotions and behaviours. Consequently, actors must think and behave not as themselves but as the characters they are pretending to be. In other words, they have to assume a ‘fictional first-person' (Fic1P) perspective. In this functional MRI study, we sought to identify brain regions preferentially activated when actors adopt a Fic1P perspective during dramatic role playing. In the scanner, university-trained actors responded to a series of hypothetical questions from either their own 1P perspective or from that of Romeo (male participants) or Juliet (female participants) from Shakespeare's drama. Compared to responding as oneself, responding in character produced global reductions in brain activity and, particularly, deactivations in the cortical midline network of the frontal lobe, including the dorsomedial and ventromedial prefrontal cortices. Thus, portraying a character through acting seems to be a deactivation-driven process, perhaps representing a ‘loss of self'.


2016 ◽  
Vol 30 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Surapi Bhairavi Wijayendran ◽  
Aisling O’Neill ◽  
Sagnik Bhattacharyya

ObjectiveThe relationship between cannabis use and the onset of psychosis is well established. Aberrant salience processing is widely thought to underpin many of these symptoms. Literature explicitly investigating the relationship between aberrant salience processing and cannabis use is scarce; with those few studies finding that acute tetrahydrocannabinol (THC) administration (the main psychoactive component of cannabis) can result in abnormal salience processing in healthy cohorts, mirroring that observed in psychosis. Nevertheless, the extent of and mechanisms through which cannabis has a modulatory effect on aberrant salience, following both acute and chronic use, remain unclear.MethodsHere, we systematically review recent findings on the effects of cannabis use – either through acute THC administration or in chronic users – on brain regions associated with salience processing (through functional MRI data); and performance in cognitive tasks that could be used as either direct or indirect measures of salience processing. We identified 13 studies either directly or indirectly exploring salience processing. Three types of salience were identified and discussed – incentive/motivational, emotional/affective, and attentional salience.ResultsThe results demonstrated an impairment of immediate salience processing, following acute THC administration. Amongst the long-term cannabis users, normal salience performance appeared to be underpinned by abnormal neural processes.ConclusionsOverall, the lack of research specifically exploring the effects of cannabis use on salience processing, weaken any conclusions drawn. Additional research explicitly focussed on salience processing and cannabis use is required to advance our understanding of the neurocognitive mechanisms underlying the association between cannabis use and development of psychosis.


2014 ◽  
Vol 89 (6) ◽  
pp. 1979-2010 ◽  
Author(s):  
Anne M. Farrell ◽  
Joshua O. Goh ◽  
Brian J. White

ABSTRACT Managers may rely on emotional reactions to a setting to the detriment of economic considerations (“System 1 processing”), resulting in decisions that are costly for firms. While economic theory prescribes performance-based incentives to align goals and induce effort, psychology theory suggests that the salience of emotions is difficult to overcome without also inducing more deliberate consideration of both emotional and economic factors (“System 2 processing”). We link these perspectives by investigating whether performance-based incentives mitigate the costly influence of emotion by inducing more System 2 processing. Using functional magnetic resonance imaging and traditional experiments, we investigate managers' brain activity and choices under fixed wage and performance-based contracts. Under both, brain regions associated with System 1 processing are more active when emotion is present. Relative to fixed wage contracts, performance-based contracts induce System 2 processing in emotional contexts beyond that observed absent emotion, and decrease the proportion of economically costly choices. Data Availability: Contact the authors.


2013 ◽  
Vol 25 (3) ◽  
pp. 401-420 ◽  
Author(s):  
Shu-Jen Kung ◽  
Joyce L. Chen ◽  
Robert J. Zatorre ◽  
Virginia B. Penhune

Humans are able to find and tap to the beat of musical rhythms varying in complexity from children's songs to modern jazz. Musical beat has no one-to-one relationship with auditory features—it is an abstract perceptual representation that emerges from the interaction between sensory cues and higher-level cognitive organization. Previous investigations have examined the neural basis of beat processing but have not tested the core phenomenon of finding and tapping to the musical beat. To test this, we used fMRI and had musicians find and tap to the beat of rhythms that varied from metrically simple to metrically complex—thus from a strong to a weak beat. Unlike most previous studies, we measured beat tapping performance during scanning and controlled for possible effects of scanner noise on beat perception. Results showed that beat finding and tapping recruited largely overlapping brain regions, including the superior temporal gyrus (STG), premotor cortex, and ventrolateral PFC (VLPFC). Beat tapping activity in STG and VLPFC was correlated with both perception and performance, suggesting that they are important for retrieving, selecting, and maintaining the musical beat. In contrast BG activity was similar in all conditions and was not correlated with either perception or production, suggesting that it may be involved in detecting auditory temporal regularity or in associating auditory stimuli with a motor response. Importantly, functional connectivity analyses showed that these systems interact, indicating that more basic sensorimotor mechanisms instantiated in the BG work in tandem with higher-order cognitive mechanisms in PFC.


Sign in / Sign up

Export Citation Format

Share Document