Summary—What Should Be Done?

Author(s):  
Peter Rez

Energy policy should start with an analysis of what physics and engineering say is possible, followed by an analysis of economics, and not be driven by mandates that favour renewable energy sources. In practice, it is very hard to make renewables such as solar and wind work, owing to their intermittency, and so widespread adoption might not lead to any reduction in carbon dioxide emissions, as demonstrated by the German ‘Energiewende’. To reduce carbon dioxide emissions, all base load electrical demand should be generated by nuclear power, as in France. To cut down on energy requirements, industrial countries should transition from a ‘throwaway society’ to a ‘repair’ society, and people should cut down on travel and meat consumption.

Author(s):  
Samuel Asumadu-Sarkodie ◽  
Phebe Asantewaa Owusu

In this study, the impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution from 1971 to 2011 is investigated using the statistically inspired modification of partial least squares (SIMPLS) regression model. There was evidence of a linear relationship between energy, agriculture, macroeconomic and human-induced indicators and carbon dioxide emissions. Evidence from the SIMPLS regression shows that a 1% increase in crop production index will reduce carbon dioxide emissions by 0.71%. Economic growth increased by 1% will reduce carbon dioxide emissions by 0.46%, thus supports the environmental Kuznets curve hypothesis that an increase in a country’s economic growth leads to a reduction in environmental pollution. An increase in electricity production from hydroelectric sources by 1% will reduce carbon dioxide emissions by 0.30%, thus increasing renewable energy sources in Ghana’s energy portfolio will help mitigate carbon dioxide emissions. Increasing Enteric Emissions by 1% will increase carbon dioxide emissions by 4.22% and a 1% increase in the Nitrogen content of Manure Management will increase carbon dioxide emissions by 6.69%. The SIMPLS regression forecasting exhibited a 5% MAPE from the prediction of carbon dioxide emissions.


Author(s):  
E. A. Alabushev ◽  
I. S. Bersenev ◽  
V. V. Bragin ◽  
A. A. Stepanova

The Paris Agreement, adopted in December of 2015 at the 21st session of the UNFCCC Conference of the Parties and effected from November of 2016, coordinates the efforts of states to reduce greenhouse gas (GHG) emissions, including carbon dioxide. One of its largest emitters to the atmosphere is the metallurgical industry. Among the proposed ways to reduce carbon dioxide emissions is the widespread use of hydrogen in the ferrous metallurgy. An overview of the problems that the ferrous metallurgy will face when replacing carbon-containing fuels with hydrogen is presented. It was noted that the use of hydrogen in the ferrous metallurgy contains such technological risks as high cost in comparison with currently used fuels and reducing agents; explosion hazard and corrosion activity, the need for a radical reconstruction of thermal units when using hydrogen instead of traditional for the ferrous metallurgy natural, coke and blast furnace gases, as well as solid fuels. It is shown that minimizing these risks is not always possible or economically feasible, and the result of using hydrogen in the ferrous metallurgy instead of carbon-containing fuel from the point of view of reducing greenhouse gas emissions may be low with a significant increase of economic and social risks.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1513 ◽  
Author(s):  
Arkadiusz Dyjakon ◽  
Daniel García-Galindo

The use of new sources of biomass residues for energy purposes in Europe is crucial for increasing the share of renewable energy sources and the limitation of carbon dioxide emissions. The residues coming from regular pruning of permanent crops are an alternative to conventional fuels. The paper is focused on the assessment of European pruning potentials in European Union (EU28) in line with the nomenclature of territorial units (NUTs) at NUTs0, NUTs2 and NUTs3 level. The assessment indicates that the yearly theoretical and technical potential of that biomass is 13.67 MtDM (or 252.0 PJ·yr−1) and 12.51 MtDM (or 230.6 PJ·yr−1), respectively. The economic potential has been assessed based on different management or exploitation models: management of pruning as a waste, self-consumption, and demand-driven mobilisation by consumption centres at small, medium and large scales. The utilisation of pruning when gathering is compulsory coincides with the technical potential. Under self-consumption, up to 10.98 MtDM per year could be effectively mobilised (202.3 PJ·yr−1). The creation of new value chains for delivery of pruning biomass ranges 7.30 to 8.69 MtDM per year (from 134.5 to 160.2 PJ·yr−1). When applying further constraints related to other existing uses the implementation of the potential further descends, ranging from 6.18 to 10.66 MtDM per year (from 113.9 to 196.4 PJ·yr−1). The analysis shows that the amount of available pruning residues is regionally scattered; however, most of them (ca. 80%) are located in the Mediterranean area.


Sign in / Sign up

Export Citation Format

Share Document