Goals of Characterizing a Species Habitat

Author(s):  
Joseph A. Veech

There are several reasons for conducting a habitat analysis and identifying the environmental (habitat) characteristics that a species associates with. (1) Knowledge of a species’ habitat requirements is crucial in restoring and managing habitat for the species. (2) Carrying capacity informs us about the potential (or lack thereof) for future population growth based on resource availability. Knowledge of a species’ habitat requirements allows us to interpret the importance of carrying capacity in a habitat-specific way. (3) The study of species interactions and the potential for species coexistence is supported by having knowledge of the habitat of each species under investigation. (4) Habitat preference and selection as eco-evolutionary processes continue to be widely studied by ecologists—interpretation of the results of such studies is best done with knowledge of the species–habitat associations. Such knowledge can also be useful in the design of preference and selection studies. (5) Knowledge of species–habitat associations can also be of great use in selecting the environmental variables to use in species distribution models. All five of these goals point to the great utility of conducting a habitat analysis as a supporting investigation or as a way to obtain knowledge to put to a practical purpose.

The Condor ◽  
2006 ◽  
Vol 108 (1) ◽  
pp. 5-12 ◽  
Author(s):  
William B. Kristan

Abstract Hierarchical structure in bird-habitat associations can arise from hierarchical structure in environmental variables and from the scale-dependent responses of birds to habitat. Hierarchical structure in environmental variables is expected to result from interactions between variables that differ in grain size (spatial resolution) and frequency, and should occur commonly. Birds cannot accurately sample habitat characteristics at all spatial scales simultaneously, and the habitat chosen for a given purpose may differ depending on whether a bird samples from high above the ground (which is best for sampling coarse-grained variables) or from ground level (which is best for sampling fine-grained variables). Additionally, birds may exhibit an absolute response to a habitat variable, if it is unsuitable beyond some threshold level, or a relative response, if all available habitat is suitable but some is preferred. Models that can represent hierarchical structure in habitat, as well as hierarchical, scale-dependent responses by birds, should provide researchers the best chance of understanding avian habitat associations.


Author(s):  
Joseph A. Veech

Species vary tremendously in their life histories and behavior. The particular life history traits and behavior of the focal species must be considered when designing a study to examine habitat associations. For some species, individuals use different areas (of the landscape or territory) for breeding and foraging. As such, the important characteristics for the foraging and breeding habitats may be different. The dramatically different life stages of some organisms (e.g., amphibians and some insects) often correspond to equally dramatic differences in habitat use between juveniles and adults. For some species, habitat use differs among seasons. Species that are highly mobile and have individuals that move around substantially on a daily or weekly basis are particularly challenging for a habitat analysis. For these species, the most efficient and appropriate study design may be one that tracks individuals (through radio-telemetry or GPS) and analyzes the environmental or habitat characteristics at locations where the individual has stopped, rather than trying to survey for the species in pre-established and insufficiently small survey plots. In addition, individual movement and the issues mentioned above may necessitate that environmental variables are measured and analyzed at multiple spatial scales.


2020 ◽  
Vol 77 (9) ◽  
pp. 1540-1551 ◽  
Author(s):  
Tyler Wagner ◽  
Gretchen J.A. Hansen ◽  
Erin M. Schliep ◽  
Bethany J. Bethke ◽  
Andrew E. Honsey ◽  
...  

Two primary goals in fisheries research are to (i) understand how habitat and environmental conditions influence the distribution of fishes across the landscape and (ii) make predictions about how fish communities will respond to environmental and anthropogenic change. In inland, freshwater ecosystems, quantitative approaches traditionally used to accomplish these goals largely ignore the effects of species interactions (competition, predation, mutualism) on shaping community structure, potentially leading to erroneous conclusions regarding habitat associations and unrealistic predictions about species distributions. Using two contrasting case studies, we highlight how joint species distribution models (JSDMs) can address the aforementioned deficiencies by simultaneously quantifying the effects of abiotic habitat variables and species dependencies. In particular, we show that conditional predictions of species occurrence from JSDMs can better predict species presence or absence compared with predictions that ignore species dependencies. JSDMs also allow for the estimation of site-specific probabilities of species co-occurrence, which can be informative for generating hypotheses about species interactions. JSDMs provide a flexible framework that can be used to address a variety of questions in fisheries science and management.


2021 ◽  
Vol 13 (5) ◽  
pp. 2468
Author(s):  
Nguyen Hong Hai ◽  
Yousef Erfanifard ◽  
Van Bac Bui ◽  
Trinh Hien Mai ◽  
Any Mary Petritan ◽  
...  

Studying spatial patterns and habitat association of plant communities may provide understanding of the ecological mechanisms and processes that maintain species coexistence. To conduct assessments of correlation between community compositions and habitat association, we used data from two topographically different plots with 2 ha area in tropical evergreen forests with the variables recorded via grid systems of 10 × 10 m subplots in Northern-Central Vietnam. First, we tested the relationship between community composition and species diversity indices considering the topographical variables. We then assessed the interspecific interactions of 20 dominant plant species using the nearest-neighbor distribution function, Dij(r), and Ripley’s K-function, Kij(r). Based on the significant spatial association of species pairs, indices of interspecific interaction were calculated by the quantitative amounts of the summary statistics. The results showed that (i) community compositions were significantly influenced by the topographic variables and (ii) almost 50% significant pairs of species interactions were increased with increasing spatial scales up to 10–15 m, then declined and disappeared at scales of 30–40 m. Segregation and partial overlap were the dominant association types and disappeared at larger spatial scales. Spatial segregation, mixing, and partial overlap revealed the important species interactions in maintaining species coexistence under habitat heterogeneity in diverse forest communities.


2007 ◽  
Vol 56 (1-6) ◽  
pp. 101-110 ◽  
Author(s):  
Chr. Wehenkel ◽  
F. Bergmann ◽  
H.-R. Gregorius

Abstract Studies on plant communities of various annual species suggest that there are particular biotic interactions among individuals from different species which could be the basis for long-term species coexistence. In the course of a large survey on species-genetic diversity relationships in several forest tree communities, it was found that statistically significant differences exist among isozyme genotype frequencies of conspecific tree groups, which differ only by species identity of their neighbours. Based on a specific measure, the association of the neighbouring species with the genotypes of the target species or that of the genotypes with the neighbouring species was quantified. Since only AAT and HEK of the five analysed enzyme systems differed in their genotype frequencies among several tree groups of the same target species, a potential involvement of their enzymatic function in the observed differences was discussed. The results of this study demonstrate a fine-scale genetic differentiation within single tree species of forest communities, which may be the result of biotic interactions between the genetic structure of a species and the species composition of its community. This observation also suggests the importance of intraspecific genetic variation for interspecific adaptation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Veronica Hsu ◽  
Holly V. Moeller

Metabolic symbiosis is a form of symbiosis in which organisms exchange metabolites, typically for mutual benefit. For example, acquired phototrophs like Paramecium bursaria obtain photosynthate from endosymbiotic green algae called Chlorella. In addition to facilitating the persistence of P. bursaria by providing a carbon source that supplements P. bursaria’s heterotrophic digestion of bacteria, symbiotic Chlorella may impact competitive interactions between P. bursaria and other bacterivores, with cascading effects on community composition and overall diversity. Here, we tested the effects of metabolic symbiosis on coexistence by assessing the impacts of acquired phototrophy on priority effects, or the effect of species arrival order on species interactions, between P. bursaria and its competitor Colpidium. Our results suggest light-dependent priority effects. The acquired phototroph benefited from metabolic symbiosis during sequential arrival of each organism in competition, and led to increased growth of late-arriving Colpidium. These findings demonstrate that understanding the consequences of priority effects for species coexistence requires consideration of metabolic symbiosis.


2021 ◽  
Author(s):  
Facundo Alvarez ◽  
Paulo S Morandi ◽  
Ben Hur Marimon-Junior ◽  
Reginal Exavier ◽  
Igor Araújo ◽  
...  

Abstract AimsBrosimum rubescens, a tree species with a Neotropical distribution, can achieve local monodominance in Southern Amazonia forests. Understanding how and why this species varies across space and time is important because the monodominance of some species alters ecosystems complexity. Here we evaluate the fundamental ecological niche of B. rubescens by species distribution models (SDM), combining predictive environmental variables with occurrence points. We specifically aim to 1) determine how the spatial distribution patterns of B. rubescens vary with different environmental predictive variables, and 2) evaluate the temporal and spatial persistence of B. rubescens in the Neotropics. MethodsTo generate the SDMs, the predictive environmental variables were incorporated as main components of climatic, hydric and soil variables. ResultsAll algorithms show higher performance in spatial predictions for hydric variables and for the combination of climatic, hydric and edaphic variables. We identified that the potential niches of B. rubescens seem to be defined by climatic fluctuations, with the edaphic conditions being predictive variables that are not restrictive of their presence on the evaluated spatial scale. From the LMG (Last Glacial Maximum) to the present, the species seems to have increased its spatial amplitude; however, from the present to the future, predictions suggest that B. rubescens will experience a considerable loss of its range. ConclusionsOur findings show the independent and combined effects of different environmental variables, allowing us to identify which limit or facilitate the spatial distribution of B. rubescens. We corroborate the spatial persistence and geographical fidelity of the species' spatial patterns over time.


Author(s):  
Joseph A. Veech

There are many different design and statistical issues that a researcher should consider when developing the data collection protocol or when interpreting results from a habitat analysis. One of the first considerations is simply the area to include in the study. This depends on the behavior (particularly mobility) of the focal species and logistical constraints. The amount of area also relates to the number of survey locations (plots, transects, or other) and their spatial placement. Survey data often include many instances of a species absent from a spatial sampling unit. These could be true absences or might represent very low species detection probability. There are different statistical techniques for estimating detection probability as well as analyzing data with a substantial proportion of zero-abundance values. The spatial dispersion of the species within the overall study area or region is never random. Even apart from the effect of habitat, individuals are often aggregated due to various environmental factors or species traits. This can affect count data collected from survey plots. Related to spatial dispersion, the overall background density of the species within the study area can introduce particular challenges in identifying meaningful habitat associations. Statistical issues such as normality, multicollinearity, spatial and temporal autocorrelation may be relatively common and need to be addressed prior to an analysis. None of these design and statistical issues presents insurmountable challenges to a habitat analysis.


Author(s):  
Joseph A. Veech

Habitat analysis is strictly defined as a statistical examination to identify the environmental variables that a species associates with, wherein association is taken as some form of correspondence between a species response variable (e.g., presence–absence or abundance) and the environmental variables. There are other statistical techniques and empirical goals that extend this basic framework. These techniques often rely on a habitat analysis having been conducted as an initial step. Resource selection functions quantify an individual’s and a species’ use of a resource based upon the properties of the resource. Resource is broadly defined and can include particular types of habitat. Selectivity and preference indices are used to assess an individual’s preference and active choice of different resource types. Compositional data analysis is a statistical method for examining the composition of an individual’s territory or home range with regard to different habitat types that may be represented. Habitat suitability modeling and species distribution modeling are closely related techniques designed to map the spatial distribution of a species’ habitat and sometimes the species itself based upon its habitat requirements and other factors.


1998 ◽  
Vol 76 (5) ◽  
pp. 897-901 ◽  
Author(s):  
Michael S Rodway

Understanding of breeding habitat requirements is vital to recovery plans for the endangered eastern North American population of Harlequin Ducks (Histrionicus histrionicus). I compared habitat characteristics and benthic invertebrate fauna between streams in Hebron Fiord, Labrador, used and unused by Harlequin Ducks in 1996. Used streams were narrower, had higher pH and temperature, a larger substrate, steeper shorelines, and greater vegetation cover on islands and shorelines than unused streams. Greater numbers of invertebrates were recovered from kick samples, simuliid larvae and plecopteran nymphs were more frequent, and chironomid larvae and emphemeropteran nymphs were less frequent in used than in unused streams. Results from this study will help focus future survey and conservation efforts.


Sign in / Sign up

Export Citation Format

Share Document