The Measurement Problem for Emergent Spacetime in Loop Quantum Gravity

2021 ◽  
pp. 222-234
Author(s):  
Richard Healey

Any quantum theory of gravity faces the measurement problem. Carlo Rovelli sees his relational interpretation as offering a solution to this problem when applied to his favored loop quantum gravity (LQG). I examine the prospects of Rovelli’s relationalism in LQG. In LQG it is not clear what physical systems there are at a fundamental level with no spacetime. But implementing Rovelli’s relational interpretation in the context of LQG requires an account of interaction and a model of observer systems whose relational states represent determinate outcomes. Even if no such account is forthcoming at a fundamental level in LQG, it might still be available in a limit at which spacetime has emerged. But to use this account effectively to address the measurement problem, it would be necessary to reconcile the observer-relativity of measurement outcomes with a basic norm of scientific objectivity.

2006 ◽  
Vol 15 (10) ◽  
pp. 1545-1559 ◽  
Author(s):  
MARTIN BOJOWALD

General relativity successfully describes space–times at scales that we can observe and probe today, but it cannot be complete as a consequence of singularity theorems. For a long time, there have been indications that quantum gravity will provide a more complete, non-singular extension which, however, was difficult to verify in the absence of a quantum theory of gravity. By now there are several candidates which show essential hints as to what a quantum theory of gravity may look like. In particular, loop quantum gravity is a non-perturbative formulation which is background independent, two properties which are essentially close to a classical singularity with strong fields and a degenerate metric. In cosmological and black hole settings, one can indeed see explicitly how classical singularities are removed by quantum geometry: there is a well-defined evolution all the way down to, and across, the smallest scales. As for black holes, their horizon dynamics can be studied showing characteristic modifications to the classical behavior. Conceptual and physical issues can also be addressed in this context, providing lessons for quantum gravity in general. Here, we conclude with some comments on the uniqueness issue often linked to quantum gravity in some form or another.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1334
Author(s):  
S. A. Larin

We consider R + R 2 relativistic quantum gravity with the action where all possible terms quadratic in the curvature tensor are added to the Einstein-Hilbert term. This model was shown to be renormalizable in the work by K.S. Stelle. In this paper, we demonstrate that the R + R 2 model is also unitary contrary to the statements made in the literature, in particular in the work by Stelle. New expressions for the R + R 2 Lagrangian within dimensional regularization and the graviton propagator are derived. We demonstrate that the R + R 2 model is a good candidate for the fundamental quantum theory of gravity.


2007 ◽  
Vol 16 (09) ◽  
pp. 1397-1474 ◽  
Author(s):  
MUXIN HAN ◽  
YONGGE MA ◽  
WEIMING HUANG

In the recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, non-perturbative quantum theory for a Lorentzian gravitational field on a four-dimensional manifold. In the approach, the principles of quantum mechanics are combined with those of general relativity naturally. Such a combination provides us a picture of, so-called, quantum Riemannian geometry, which is discrete on the fundamental scale. Imposing the quantum constraints in analogy from the classical ones, the quantum dynamics of gravity is being studied as one of the most important issues in loop quantum gravity. On the other hand, the semi-classical analysis is being carried out to test the classical limit of the quantum theory. In this review, the fundamental structure of loop quantum gravity is presented pedagogically. Our main aim is to help non-experts to understand the motivations, basic structures, as well as general results. It may also be beneficial to practitioners to gain insights from different perspectives on the theory. We will focus on the theoretical framework itself, rather than its applications, and do our best to write it in modern and precise langauge while keeping the presentation accessible for beginners. After reviewing the classical connection dynamical formalism of general relativity, as a foundation, the construction of the kinematical Ashtekar–Isham–Lewandowski representation is introduced in the content of quantum kinematics. The algebraic structure of quantum kinematics is also discussed. In the content of quantum dynamics, we mainly introduce the construction of a Hamiltonian constraint operator and the master constraint project. At last, some applications and recent advances are outlined. It should be noted that this strategy of quantizing gravity can also be extended to obtain other background-independent quantum gauge theories. There is no divergence within this background-independent and diffeomorphism-invariant quantization program of matter coupled to gravity.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Claus Kiefer

The search for a consistent and empirically established quantum theory of gravity is among the biggest open problems of fundamental physics. The obstacles are of formal and of conceptual nature. Here, I address the main conceptual problems, discuss their present status, and outline further directions of research. For this purpose, the main current approaches to quantum gravity are briefly reviewed and compared.


2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645028
Author(s):  
Ya. I. Azimov

Discussion of the physical realization of coordinates demonstrates that the quantum theory of gravity (still absent) should be non-local and, probably, non-commutative as well.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 251
Author(s):  
Martin Bojowald

Background independence is often emphasized as an important property of a quantum theory of gravity that takes seriously the geometrical nature of general relativity. In a background-independent formulation, quantum gravity should determine not only the dynamics of space–time but also its geometry, which may have equally important implications for claims of potential physical observations. One of the leading candidates for background-independent quantum gravity is loop quantum gravity. By combining and interpreting several recent results, it is shown here how the canonical nature of this theory makes it possible to perform a complete space–time analysis in various models that have been proposed in this setting. In spite of the background-independent starting point, all these models turned out to be non-geometrical and even inconsistent to varying degrees, unless strong modifications of Riemannian geometry are taken into account. This outcome leads to several implications for potential observations as well as lessons for other background-independent approaches.


Author(s):  
Claus Kiefer

This chapter notes that quantum gravity places the concept of time on a new level. In the absence of experimental hints, mathematical and conceptual issues must be chosen as the guides in the search for such a theory. Just as reconceiving classical notions of time was key for Einstein, in his discovery of special relativity, so too many believe that time will again hold the clue for theoretical advancement, but this time with quantum gravity. The chapter details the challenge of reconciling quantum theory with relativity, concentrating especially on why time in particular causes trouble. It describes a result in canonical quantum gravity which is possibly of signal importance, namely, that fundamentally there is no time at all, and discusses the problem of time, quantization, semiclassical time, loop quantum gravity, and string theory.


2020 ◽  
Vol 75 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Maithresh Palemkota ◽  
Tejinder P. Singh

AbstractWe present a new, falsifiable quantum theory of gravity, which we name non-commutative matter-gravity. The commutative limit of the theory is classical general relativity. In the first two papers of this series, we have introduced the concept of an atom of space-time-matter (STM), which is described by the spectral action in non-commutative geometry, corresponding to a classical theory of gravity. We used the Connes time parameter, along with the spectral action, to incorporate gravity into trace dynamics. We then derived the spectral equation of motion for the gravity part of the STM atom, which turns out to be the Dirac equation on a non-commutative space. In the present work, we propose how to include the matter (fermionic) part and give a simple action principle for the STM atom. This leads to the equations for a quantum theory of gravity, and also to an explanation for the origin of spontaneous localisation from quantum gravity. We use spontaneous localisation to arrive at the action for classical general relativity (including matter source) from the action for STM atoms.


2006 ◽  
Vol 15 (12) ◽  
pp. 2181-2185 ◽  
Author(s):  
RODOLFO GAMBINI ◽  
RAFAEL A. PORTO ◽  
JORGE PULLIN

Unitarity is a pillar of quantum theory. Nevertheless, it is also a source of several of its conceptual problems. We note that in a world where measurements are relational, as is the case in gravitation, quantum mechanics exhibits a fundamental level of loss of coherence. This can be the key to solving, among others, the puzzles posed by the black hole information paradox, the formation of inhomogeneities in cosmology and the measurement problem in quantum mechanics.


2019 ◽  
Vol 74 (5) ◽  
pp. 383-386
Author(s):  
Tejinder P. Singh

AbstractBy invoking an asymmetric metric tensor, and borrowing ideas from non-commutative geometry, string theory, and trace dynamics, we propose an action function for quantum gravity. The action is proportional to the four-dimensional non-commutative curvature scalar (which is torsion dependent), which is sourced by the Nambu–Goto world-sheet action for a string plus the Kalb–Ramond string action. This ‘quantum gravity’ is actually a non-commutative classical matrix dynamics, and the only two fundamental constants in the theory are the square of the Planck length and the speed of light. By treating the entity described by this action as a microstate, one constructs the statistical thermodynamics of a large number of such microstates, in the spirit of trace dynamics. Quantum field theory (and ℏ) and quantum general relativity (and G) emerge from the underlying matrix dynamics in the thermodynamic limit. Statistical fluctuations, which are inevitably present about equilibrium, are the source for spontaneous localisation, which drives macroscopic quantum gravitational systems to the classical general relativistic limit. While the mathematical formalism governing these ideas remains to be developed, we hope to highlight here the deep connection between quantum foundations and the sought-for quantum theory of gravity. In the sense described in this article, ongoing experimental tests of spontaneous collapse theories are in fact also tests of string theory!


Sign in / Sign up

Export Citation Format

Share Document