Stopped-flow fluorescence spectroscopy

Author(s):  
Michael G. Gore ◽  
Stephen P. Bottomley

Biochemical reactions, such as substrate or coenzyme binding to enzymes are usually completed in no more than 50-100 ms and thus require rapid reaction techniques such as stopped-flow instrumentation for their study. Fortunately, many such reactions can be followed by changes in the absorption properties of the substrate, product or coenzyme, and examples of these have been described in Chapters 1, 7 and 8. An alternative possibility is that during the reaction there is a change in the fluorescence properties of the substrate, coenzyme or the protein itself. Some reactions, particularly those involving the oxidation/ reduction of coenzymes, involve both changes in absorption and changes in fluorescence emission intensity. In many cases, the fluorescence properties of the ligand or protein itself may change when a complex is formed, even in the absence of a full catalytic reaction occurring, e.g. the protein fluorescence emission of most pyridine or flavin nucleotide-dependent dehydrogenases is quenched when NAD(P)H or FADH (respectively) binds to them, due to resonance energy transfer from the aromatic amino acids of the protein to the coenzyme. Conversely, the fluorescence emission from the reduced-coenzymes is usually enhanced on formation of the complex with these enzymes (1-3). The principles behind both fluorescence and stopped-flow techniques have been described in preceding chapters (2 and 8, respectively) and therefore readers should familiarize themselves with these chapters for some of the background information. In this chapter, we discuss the use of stopped-flow fluorescence spectroscopy and its application to a number of biochemical problems. A typical stopped-flow system is assembled from modular components of a conventional spectrophotometer/fluorimeter, a device permitting rapid mixing of the components of a reaction and a data recording system with a fast response. Commercially available instruments offer facilities for the observation of changes in absorption and/or fluorescence emission after rapid mixing of the reagents. These measurements can often be made simultaneously due to the different optical requirements of the two spectroscopic techniques. Figure 1 gives a generalized diagram of the geometry of a stopped-flow system able to simultaneously measure changes in absorption and fluorescence intensity of a reaction.

RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 1086-1097
Author(s):  
Shunki Takaramoto ◽  
Yusuke Nakasone ◽  
Kei Sadakane ◽  
Shinsaku Maruta ◽  
Masahide Terazima

Dynamics of conformation changes of α-synuclein induced by the presence of SDS micelles are revealed using time-resolved diffusion, CD, and FRET measurements combined with a micro-stopped flow system.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Madhumita Hazra ◽  
Tanushree Dolai ◽  
Akhil Pandey ◽  
Subrata Kumar Dey ◽  
Animesh Patra

The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2)HL = (1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand.


2013 ◽  
Vol 634-638 ◽  
pp. 2462-2465
Author(s):  
Wen Xian Li ◽  
Bo Yang Ao ◽  
Jing Zhang

A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, has been synthesized [using L as the first ligand, and dipyridyl L' as the second ligand]. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary europium complex has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu (III) ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. The fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex.


Beverages ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 65
Author(s):  
Rachel L. Burns ◽  
Raegan Alexander ◽  
Liliya Snaychuk ◽  
John C. Edwards ◽  
Neil Fitzgerald ◽  
...  

The Chinese spirit baijiu is currently the world’s bestselling spirit, with more than ten billion liters sold in 2018. This is a figure that puts its sales higher than whiskey, vodka, gin, and tequila combined. The multitude of baijiu varieties available in the market differ in several ways ranging from aging to the traditional artisanship involved in producing the final spirit to several other features, including the rarity of the bottle. A result of these differences is a wide distribution of prices for the various baijiu products. Consequently, a single bottle of baijiu can cost anywhere from a few dollars, up to thousands of US dollars. The price differences among the various baijiu spirits necessitate the existence of reliable scientific methods that can efficiently differentiate and authenticate the qualities of baijiu spirits. In addition, the existence of such methods facilitates the prevention of counterfeit sales of the final product. Considering this, we introduce an analytical chemistry method that distinguishes amongst different baijiu spirits based on fluorescence spectroscopy. Its attributes include the low cost and convenience that allows analysis either before or while the spirit is in the market. Our work herein focuses on the analysis of thirty different varieties of baijiu spirits from six different distilleries from East Asia and North America by fluorescence emission spectroscopy, which is associated to the price of the product. For the analysis, we employed a HORIBA FLUOROLOG 3 (HORIBA—Jobin Yvon) spectrometer. Major advantages of this method include the low cost, as no consumables except a quartz reusable cuvette are required, the minimal waste, and finally the quick processing of data.


2020 ◽  
Vol 10 (3) ◽  
pp. 178-188
Author(s):  
Bipin Rooj ◽  
Ankita Dutta ◽  
Debojyoti Mukherjee ◽  
Sahidul Islam ◽  
Ujjwal Mandal

Background: Understanding the interaction between different organic dyes and carbon quantum dots helps us to understand several photo physical processes like electron transfer, energy transfer, molecular sensing, drug delivery and dye degradation processes etc. Objective: The primary objective of this study is to whether the carbon quantum dots can act as an electron donor and can participate in the different photo physical processes. Methods: In this work, Carbon Quantum Dots (CQDLs) are synthesized in most economical and simple carbonization method where petals of Nelumbo nucifera L. are used as a carbon precursor. The synthesized CQDLs were characterized by using experimental techniques like UV−Vis absorption, FT-IR, Transmission Electron Microscopy (TEM), steadystate and time-resolved fluorescence spectroscopy. Results: The spectral analysis shows that the so synthesized CQDLs are spherical in shape and its diameter is around 4.2 nm. It shows the fluorescence emission maximum at 495 nm with a quantum yield of 4%. In this work the interaction between Carbon Quantum Dots (CQDLs) and an organic dye Malachite Green (MG) is studied using fluorescence spectroscopic technique under ambient pH condition (At pH 7). The quenching mechanism of CQDLs with MG was investigated using Stern-Volmer equation and time-resolved fluorescence lifetime studies. The results show that the dominant process of fluorescence quenching is attributed to Forster Resonance Energy Transfer (FRET) having a donor acceptor distance of 53 Å where CQDLs act as a donor and MG acts as an acceptor. Conclusion: This work has a consequence that CQDLs can be used as a donor species for different photo physical processes such as photovoltaic cell, dye sensitized solar cell, and also for antioxidant activity study.


1998 ◽  
Vol 52 (6) ◽  
pp. 783-789 ◽  
Author(s):  
Quentin S. Hanley ◽  
Peter J. Verveer ◽  
Thomas M. Jovin

We report the use of a programmable array microscope (PAM) for the acquisition of spectrally resolved and high-throughput optical sections. The microscope is based on the use of a spatial light modulator for defining patterns of excitation and/or detection of fluorescence. For obtaining optically sectioned spectral images, the entrance slit of an imaging spectrograph and a line illumination pattern defined with a spatial light modulator are placed in conjugate optical positions. Compared to wide-field illumination, optical sectioning led to greater than 3× improvement in the rejection of out-of-focus fluorescence emission and nearly 6× greater peak-to-background ratios in biological specimens, yielding better contrast and spectral characterization. These effects resulted from a reduction in the artifacts arising from spectral contributions of structures outside the region of interest. We used the programmable illumination capability of the spectroscopic system to explore a variety of excitation/detection patterns for increasing the throughput of optical sectioning microscopes. A Sylvester-type Hadamard construction was particularly efficient, performing optical sectioning while maintaining a 50% optical throughput. These results demonstrate the feasibility of full-field highly multiplexed confocal spectral imaging.


2007 ◽  
Vol 46 (02) ◽  
pp. 206-211 ◽  
Author(s):  
L. Marcu ◽  
Q. Fang ◽  
T. Papaioannou ◽  
J. Qiao ◽  
M. Fishbein ◽  
...  

Summary Objectives : A new deconvolution method for the analysis of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data is introduced and applied for tissue diagnosis. Method : The intrinsic TR-LIFS decays are expanded on a Laguerre basis, and the computed Laguerre expansion coefficients (LEC) are used to characterize the sample fluorescence emission. The method was applied for the diagnosis of atherosclerotic vulnerable plaques. Results : At a first stage, using a rabbit atherosclerotic model, 73 TR-LIFS in-vivo measurements from the normal and atherosclerotic aorta segments of eight rabbits were taken. The Laguerre deconvolution technique was able to accurately deconvolve the TR-LIFS measurements. More interesting, the LEC reflected the changes in the arterial biochemical composition and provided discrimination of lesions rich in macrophages/foamcells with high sensitivity (> 85%) and specificity (> 95%). At a second stage, 348 TR-LIFS measurements were obtained from the explanted carotid arteries of 30 patients. Lesions with significant inflammatory cells (macrophages/foam-cells and lymphocytes) were detected with high sensitivity (> 80%) and specificity (> 90%), using LEC-based classifiers. Conclusion : This study has demonstrated the potential of using TR-LIFS information by means of LEC for in- vivo tissue diagnosis, and specifically for detecting inflammation in atherosclerotic lesions, a key marker of plaque vulnerability.


2018 ◽  
Vol 11 (7) ◽  
pp. 3987-4003 ◽  
Author(s):  
Tobias Könemann ◽  
Nicole J. Savage ◽  
J. Alex Huffman ◽  
Christopher Pöhlker

Abstract. Fluorescent dyed polystyrene latex spheres (PSLs) are commonly used for characterization and calibration of instruments detecting fluorescence signals from particles suspended in the air and other fluids. Instruments like the Ultraviolet Aerodynamic Particle Sizer (UV-APS) and the Waveband Integrated Bioaerosol Sensor (WIBS) are widely used for bioaerosol research, but these instruments present significant technical and physical challenges requiring careful characterization with standard particles. Many other research communities use flow cytometry and other instruments that interrogate fluorescence from individual particles, and these also frequently rely on fluorescent PSLs as standards. Nevertheless, information about physical properties of commercially available PSLs provided by each manufacturer is generally proprietary and rarely available, making their use in fluorescence validation and calibration very difficult. This technical note presents an overview of steady-state fluorescence properties of fluorescent and non-fluorescent PSLs, as well as of polystyrene-divinylbenzene (PS-DVB) particles, by using on- and offline spectroscopic techniques. We show that the “fluorescence landscape” of PSLs is more complex than the information typically provided by manufacturers may imply, especially revealing multimodal emission patterns. Furthermore, non-fluorescent PSLs also exhibit defined patterns of fluorescent emission originating from a mixture of polystyrene and detergents, which becomes a crucial point for fluorescence threshold calibrations and qualitative comparison between instruments. By comparing PSLs of different sizes, but doped with the same dye, changes in emission spectra from bulk solutions are not immediately obvious. On a single-particle scale, however, fluorescence intensity values increase with increasing particle size. No significant effect in the fluorescence signatures was detectable by comparing PSLs in dry vs. wet states, indicating that solvent water may only play a minor role as a fluorescence quencher. Because information provided by manufacturers of commercially available PSLs is generally very limited, we provide the steady-state excitation–emission matrices (EEMs) of PSLs as open-access data within the Supplement. Detergent and solvent effects are also discussed in order to provide information not available elsewhere to researchers in the bioaerosol and other research communities. These data are not meant to serve as a fundamental library of PSL properties because of the variability of fluorescent properties between batches and as a function of particle aging and agglomeration. The data presented, however, provide a summary of spectral features which are consistent across these widely used fluorescent standards. Using these concepts, further checks will likely be required by individual researchers using specific lots of standards.


Sign in / Sign up

Export Citation Format

Share Document