Urban Climate and Risk

Author(s):  
Teodoro Georgiadis

This work reports on the main physical processes that arise in the environment of the megacity from the “urban metabolism”—the complex interactions of the climate with the activities performed in the city and its built structure and texture—as well as on associated large-scale processes that generate hazards for the megacity’s inhabitants. It is estimated that in a few decades most of the world’s population will live in urban centers. Both the growth of megacities and climate change will increase the vulnerability of huge sectors of the population to climatic consequences of the urban metabolism. These include urban heat islands, pollution, and extreme weather events such as heat waves and floods. Developing policies to mitigate these threats will require integrating scientific knowledge with management skills, communication among cities about effective approaches, and taking into account residents’ needs for health and the capacity to live safely.

Author(s):  
Teodoro Georgiadis

This work reports on the main physical processes that arise in the environment of the megacity from the “urban metabolism”—the complex interactions of the climate with the activities performed in the city and its built structure and texture—as well as on associated large-scale processes that generate hazards for the megacity’s inhabitants. It is estimated that in a few decades most of the world’s population will live in urban centers. Both the growth of megacities and climate change will increase the vulnerability of huge sectors of the population to climatic consequences of the urban metabolism. These include urban heat islands, pollution, and extreme weather events such as heat waves and floods. Developing policies to mitigate these threats will require integrating scientific knowledge with management skills, communication among cities about effective approaches, and taking into account residents’ needs for health and the capacity to live safely.


2021 ◽  
Vol 13 (11) ◽  
pp. 6106
Author(s):  
Irantzu Alvarez ◽  
Laura Quesada-Ganuza ◽  
Estibaliz Briz ◽  
Leire Garmendia

This study assesses the impact of a heat wave on the thermal comfort of an unconstructed area: the North Zone of the Island of Zorrotzaurre (Bilbao, Spain). In this study, the impact of urban planning as proposed in the master plan on thermal comfort is modeled using the ENVI-met program. Likewise, the question of whether the urbanistic proposals are designed to create more resilient urban environments is analyzed in the face of increasingly frequent extreme weather events, especially heat waves. The study is centered on the analysis of temperature variables (air temperature and average radiant temperature) as well as wind speed and relative humidity. This was completed with the parameters of thermal comfort, the physiological equivalent temperature (PET) and the Universal Temperature Climate Index (UTCI) for the hours of the maximum and minimum daily temperatures. The results demonstrated the viability of analyzing thermal comfort through simulations with the ENVI-met program in order to analyze the behavior of urban spaces in various climate scenarios.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1313
Author(s):  
Aytaç Kubilay ◽  
Jonas Allegrini ◽  
Dominik Strebel ◽  
Yongling Zhao ◽  
Dominique Derome ◽  
...  

As cities and their population are subjected to climate change and urban heat islands, it is paramount to have the means to understand the local urban climate and propose mitigation measures, especially at neighbourhood, local and building scales. A framework is presented, where the urban climate is studied by coupling a meteorological model to a building-resolved local urban climate model, and where an urban climate model is coupled to a building energy simulation model. The urban climate model allows for studies at local scale, combining modelling of wind and buoyancy with computational fluid dynamics, radiative exchange and heat and mass transport in porous materials including evaporative cooling at street canyon and neighbourhood scale. This coupled model takes into account the hygrothermal behaviour of porous materials and vegetation subjected to variations of wetting, sun, wind, humidity and temperature. The model is driven by climate predictions from a mesoscale meteorological model including urban parametrisation. Building energy demand, such as cooling demand during heat waves, can be evaluated. This integrated approach not only allows for the design of adapted buildings, but also urban environments that can mitigate the negative effects of future climate change and increased urban heat islands. Mitigation solutions for urban heat island effect and heat waves, including vegetation, evaporative cooling pavements and neighbourhood morphology, are assessed in terms of pedestrian comfort and building (cooling) energy consumption.


Author(s):  
Pamela Smith ◽  
Cristián Henríquez

This paper presents a research carried out in the city of Chillan, a medium size city located on the southern limit of the Chilean Mediterranean domain, at 36º 36`s south latitude. Chillán provides a good representative example of warm summers in central and southern Chilean cities. Five public spaces were selected, representing different typologies and relating to different urban background conditions. Users in these public spaces were observed, counted and photographed five times a day (12, 14, 16, 18 and 20 hours, local time) during a heat wave event in the summer of 2016, while meteorological parameters were established at different points within the public space. The variables evaluated were impervious surfaces, Skyview factor, H/W, azimuth, shadow and radiation. Local public environmental management should pay attention to the complex relations between urban climate, public spaces and thermal comfort since they affect the quality of life of the most vulnerable sectors of the population. This is particularly important given the increasing episodes of high temperatures and intense heat waves occurred in the city of Chillán in recent summers, which are related to urban heat islands and climate change.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Kaufui V. Wong ◽  
Andrew Paddon ◽  
Alfredo Jimenez

Medical and health researchers have shown that fatalities during heat waves are most commonly due to respiratory and cardiovascular diseases, primarily from heat's negative effect on the cardiovascular system. In an attempt to control one's internal temperature, the body’s natural instinct is to circulate large quantities of blood to the skin. However, to perform this protective measure against overheating actually harms the body by inducing extra strain on the heart. This excess strain has the potential to trigger a cardiac event in those with chronic health problems, such as the elderly, Cui et al. Frumkin showed that the relationship of mortality and temperature creates a J-shaped function, showing a steeper slope at higher temperatures. Records show that more casualties have resulted from heat waves than hurricanes, floods, and tornadoes together. This statistic’s significance is that extreme heat events (EHEs) are becoming more frequent, as shown by Stone et al. Their analysis shows a growth trend of EHEs by 0.20 days/year in U.S. cities between 1956 and 2005, with a 95% confidence interval and uncertainty of ±0.6. This means that there were 10 more days of extreme heat conditions in 2005 than in 1956. Studies held from 1989 to 2000 in 50 U.S. cities recorded a rise of 5.7% in mortality during heat waves. The research of Schifano et al. revealed that Rome’s elderly population endures a higher mortality rate during heat waves, at 8% excess for the 65–74 age group and 15% for above 74. Even more staggering is findings of Dousset et al. on French cities during the 2003 heat wave. Small towns saw an average excess mortality rate of 40%, while Paris witnessed an increase of 141%. During this period, a 0.5 °C increase above the average minimum nighttime temperature doubled the risk of death in the elderly. Heat-related illnesses and mortality rates have slightly decreased since 1980, regardless of the increase in temperatures. Statistics from the U.S. Census state that the U.S. population without air conditioning saw a drop of 32% from 1978 to 2005, resting at 15%. Despite the increase in air conditioning use, a study done by Kalkstein through 2007 proved that the shielding effects of air conditioning reached their terminal effect in the mid-1990s. Kan et al. hypothesize in their study of Shanghai that the significant difference in fatalities from the 1998 and 2003 heat waves was due to the increase in use of air conditioning. Protective factors have mitigated the danger of heat on those vulnerable to it, however projecting forward the heat increment related to sprawl may exceed physiologic adaptation thresholds. It has been studied and reported that urban heat islands (UHI) exist in the following world cities and their countries and/or states: Tel-Aviv, Israel, Newark, NJ, Madrid, Spain, London, UK, Athens, Greece, Taipei, Taiwan, San Juan, Puerto Rico, Osaka, Japan, Hong Kong, China, Beijing, China, Pyongyang, North Korea, Bangkok, Thailand, Manila, Philippines, Ho Chi Minh City, Vietnam, Seoul, South Korea, Muscat, Oman, Singapore, Houston, USA, Shanghai, China, Wroclaw, Poland, Mexico City, Mexico, Arkansas, Atlanta, USA, Buenos Aires, Argentina, Kenya, Brisbane, Australia, Moscow, Russia, Los Angeles, USA, Washington, DC, USA, San Diego, USA, New York, USA, Chicago, USA, Budapest, Hungary, Miami, USA, Istanbul, Turkey, Mumbai, India, Shenzen, China, Thessaloniki, Greece, Rotterdam, Netherlands, Akure, Nigeria, Bucharest, Romania, Birmingham, UK, Bangladesh, and Delhi, India. The strongest being Shanghai, Bangkok, Beijing, Tel-Aviv, and Tokyo with UHI intensities (UHII) of 3.5–7.0, 3.0–8.0, 5.5–10, 10, and 12 °C, respectively. Of the above world cities, Hong Kong, Bangkok, Delhi, Bangladesh, London, Kyoto, Osaka, and Berlin have been linked to increased mortality rates due to the heightened temperatures of nonheat wave periods. Chan et al. studied excess mortalities in cities such as Hong Kong, Bangkok, and Delhi, which currently observe mortality increases ranging from 4.1% to 5.8% per 1 °C over a temperature threshold of approximately 29 °C. Goggins et al. found similar data for the urban area of Bangladesh, which showed an increase of 7.5% in mortality for every 1 °C the mean temperature was above a similar threshold. In the same study, while observing microregions of Montreal portraying heat island characteristics, mortality was found to be 28% higher in heat island zones on days with a mean temperature of 26 °C opposed to 20 °C compared to a 13% increase in colder areas.


2021 ◽  
Vol 13 (23) ◽  
pp. 13206
Author(s):  
Luis Rodriguez-Lucas ◽  
Chen Ning ◽  
Marcelo Fajardo-Pruna ◽  
Yugui Yang

This paper presents a new concept called the urban vortex system (UVS). The UVS couples a vortex generator (V.G.) that produces updraft by artificial vortex and a vortex stability zone (VSZ) consisting of an assembly of four buildings acting as a chimney. Through this system, a stable, upward vortex flow can be generated. The Reynolds Averaged Navier–Stokes (RANS) simulation was carried out to investigate the flow field in the UVS. The Renormalized Group (RNG) k–ε turbulent model was selected to solve the complex turbulent flow. Validation of the numerical results was achieved by making a comparison with the large-size experimental model. The results reported that a steady-state vortex could be formed when a vapor-air mixture at 2 m/s and 450 K enters the vortex generator. This vortex presented a maximum negative central pressure of −6.81 Pa and a maximum velocity of 5.47 (m/s). Finally, the similarity method found four dimensionless parameters, which allowed all the flow characteristics to be transported on a large scale. The proposed large-scale UVS application is predicted to be capable, with have a maximum power of 2 M.W., a specific work of 3 kJ/kg, buildings 200-m high, and the ability to generate winds of 6.1 m/s (20 km/h) at 200 m up to winds of 1.5 m/s (5 km/h) at 400 m. These winds would cause the rupture of the gas capsule of the heat island phenomenon. Therefore, the city would balance its temperature with that of the surrounding rural areas.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2243 ◽  
Author(s):  
Mohammad Taleghani ◽  
Azadeh Montazami ◽  
Daniela Perrotti

The increased frequency of heat-related mortality and morbidity in urban environments indicates the importance of urban climate studies. As most of the world’s population lives in cities, the education of designers, planners and policy makers is crucial to promote urban sustainability This paper, firstly, focuses on the different factors causing the urban heat islands in large cities. Secondly, it considers how these factors are reflected in higher education programmes. Examples are shown from courses in UK higher education, explaining the common software tools used for simulating urban spaces, and student field measurements are drawn on to illustrate how urban climate studies are included in higher education curricula. Urban metabolism is used to conceptualise the main approach to systemic resource-use assessments and as a holistic framework to investigate the main drivers of the urban heat island phenomenon. To sum up, this paper reflects on the importance of training climatically-aware graduates from design schools.


2006 ◽  
Vol 19 (12) ◽  
pp. 2882-2895 ◽  
Author(s):  
David E. Parker

Abstract On the premise that urban heat islands are strongest in calm conditions but are largely absent in windy weather, daily minimum and maximum air temperatures for the period 1950–2000 at a worldwide selection of land stations are analyzed separately for windy and calm conditions, and the global and regional trends are compared. The trends in temperature are almost unaffected by this subsampling, indicating that urban development and other local or instrumental influences have contributed little overall to the observed warming trends. The trends of temperature averaged over the selected land stations worldwide are in close agreement with published trends based on much more complete networks, indicating that the smaller selection used here is sufficient for reliable sampling of global trends as well as interannual variations. A small tendency for windy days to have warmed more than other days in winter over Eurasia is the opposite of that expected from urbanization and is likely to be a consequence of atmospheric circulation changes.


Sign in / Sign up

Export Citation Format

Share Document