scholarly journals Learning to Chill: The Role of Design Schools and Professional Training to Improve Urban Climate and Urban Metabolism

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2243 ◽  
Author(s):  
Mohammad Taleghani ◽  
Azadeh Montazami ◽  
Daniela Perrotti

The increased frequency of heat-related mortality and morbidity in urban environments indicates the importance of urban climate studies. As most of the world’s population lives in cities, the education of designers, planners and policy makers is crucial to promote urban sustainability This paper, firstly, focuses on the different factors causing the urban heat islands in large cities. Secondly, it considers how these factors are reflected in higher education programmes. Examples are shown from courses in UK higher education, explaining the common software tools used for simulating urban spaces, and student field measurements are drawn on to illustrate how urban climate studies are included in higher education curricula. Urban metabolism is used to conceptualise the main approach to systemic resource-use assessments and as a holistic framework to investigate the main drivers of the urban heat island phenomenon. To sum up, this paper reflects on the importance of training climatically-aware graduates from design schools.

Vestnik MGSU ◽  
2020 ◽  
pp. 1262-1273
Author(s):  
Le Minh Tuan ◽  
Ilkhomzhon S. Shukurov ◽  
Margarita О. Gelmanova ◽  
Mikhail Yu. Slesarev

Introduction. The simulation of urban microclimates, including the urban heat island (UHI) phenomenon, has turned all the more important for urban planning. Presently, the analysis of this phenomenon is feasible thanks to high computational power of computers and links between computer modeling instruments and databases that contain information on urban environments. Advanced hardware helps to study characteristics of urban microclimates by analyzing and assessing their exposure to various climatic and anthropogenic urban factors (urban morphology, land use, construction sites, albedo, etc.) Materials and methods. ENVI-met is a software model used to simulate microclimates in urban environments. This software can optimize proportions of buildings and streets, outdoor shading, outdoor space planning, air movement, and use of construction materials in respect of thermal comfort and measures taken to mitigate consequences of urban heat islands within the framework of environmental planning of new districts. The co-authors analyze Ha Dong, a Hanoi district characterized by the high density of high-rise buildings. The co-authors consider the example of this district to study the process of detailed simulation, analysis and assessment of UHI effects. Results. ENVI-met and its simulation capacity is employed to prove that the air temperature in Wang Fu, an urban area, gradually rises from 8 am to 5 pm, when the air temperature reaches its maximal value of 32.28 °C during the period of sixteen hours. UHI intensity was maximal between midnight and 1 am on May 29, 2017, when it reached 2.41 °C. Conclusions. Cities are complex systems exposed to a wide array of interactive factors that influence the urban climate change. The value of R2 equal to 0.94 has proven the reliability of ENVI-met applied to simulate and imitate the climate of Hanoi, which is a hot and damp tropical city.


2020 ◽  
Vol 12 (11) ◽  
pp. 1871
Author(s):  
Carlos Granero-Belinchon ◽  
Aurelie Michel ◽  
Veronique Achard ◽  
Xavier Briottet

TRUST (Thermal Remote sensing Unmixing for Subpixel Temperature) is a spectral unmixing method developed to provide subpixel abundances and temperatures from radiance images in the thermal domain. By now, this method has been studied in simple study cases, with a low number of endmembers, high spatial resolutions (1 m) and more than 30 spectral bands in the thermal domain. Thus, this article aims to show the applicability of TRUST on a highly challenging study case: the analysis of a heterogeneous urban environment with airborne multispectral (eight thermal bands) images at 8-m resolution. Thus, this study is necessary to generalize the use of TRUST in the analysis of urban thermography. Since TRUST allows linking intrapixel temperatures to specific materials, it appears as a very useful tool to characterize Surface Urban Heat Islands and its dynamics at high spatial resolutions. Moreover, this article presents an improved version of TRUST, called TRUST-DNS (Day and Night Synergy), which takes advantage of daytime and nighttime acquisitions to improve the unmixing performances. In this study, both TRUST and TRUST-DNS were applied on daytime and nighttime airborne thermal images acquired over the center of Madrid during the DESIREX (Dual-use European Security IR Experiment) campaign in 2008. The processed images were obtained with the Aircraft Hyperspectral Scanner (AHS) sensor at 4-m spatial resolution on 4 July. TRUST-DNS appears to be more stable and slightly outperforms TRUST on both day and night images. In addition, TRUST applied on daytime outperforms TRUST on nighttime, illustrating the importance of the temperature contrasts during day for thermal unmixing.


2013 ◽  
Vol 1 (5) ◽  
pp. 4963-4996
Author(s):  
T. M. Giannaros ◽  
D. Melas ◽  
I. A. Daglis ◽  
I. Keramitsoglou

Abstract. The urban heat island (UHI) effect is one prominent form of localized anthropogenic climate modification. It represents a significant urban climate problem since it occurs in that layer of the atmosphere where almost all daily human activities take place. This paper presents the development of a high-resolution modelling system that could be used for simulating the UHI effect in the context of operational weather forecasting activities. The modelling system is built around a state-of-the-art numerical weather prediction model, properly modified to allow for the better representation of the urban climate. The model performance in terms of simulating the near-surface air temperature and thermal comfort conditions over the complex urban area of Athens, Greece, is evaluated during a 1.5-month operational implementation in the summer of 2010. Results from this case study reveal an overall satisfactory performance of the modelling system. The discussion of the results highlights the important role that, given the necessary modifications, a meteorological model can play as a supporting tool for developing successful heat island mitigation strategies. This is further underlined through the operational character of the presented modelling system.


Author(s):  
Teodoro Georgiadis

This work reports on the main physical processes that arise in the environment of the megacity from the “urban metabolism”—the complex interactions of the climate with the activities performed in the city and its built structure and texture—as well as on associated large-scale processes that generate hazards for the megacity’s inhabitants. It is estimated that in a few decades most of the world’s population will live in urban centers. Both the growth of megacities and climate change will increase the vulnerability of huge sectors of the population to climatic consequences of the urban metabolism. These include urban heat islands, pollution, and extreme weather events such as heat waves and floods. Developing policies to mitigate these threats will require integrating scientific knowledge with management skills, communication among cities about effective approaches, and taking into account residents’ needs for health and the capacity to live safely.


2019 ◽  
Vol 91 ◽  
pp. 05005 ◽  
Author(s):  
Minh Tuan Le ◽  
Nguyen Anh Quan Tran

The cumulative heating in some urban areas due to the urban growth and its types of industry, energy and transport, is the effect of urban heat island (UHI). It is recognized as one of the characteristics of the urban climate. The temperature increase caused by the effect (UHI) affects the energy flow in urban ecological systems, creates an unusual urban climate. By studying the effects of climate factors, local building materials to optimize energy efficiency, urban landscape, UHI phenomenon could be significantly moderated.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1313
Author(s):  
Aytaç Kubilay ◽  
Jonas Allegrini ◽  
Dominik Strebel ◽  
Yongling Zhao ◽  
Dominique Derome ◽  
...  

As cities and their population are subjected to climate change and urban heat islands, it is paramount to have the means to understand the local urban climate and propose mitigation measures, especially at neighbourhood, local and building scales. A framework is presented, where the urban climate is studied by coupling a meteorological model to a building-resolved local urban climate model, and where an urban climate model is coupled to a building energy simulation model. The urban climate model allows for studies at local scale, combining modelling of wind and buoyancy with computational fluid dynamics, radiative exchange and heat and mass transport in porous materials including evaporative cooling at street canyon and neighbourhood scale. This coupled model takes into account the hygrothermal behaviour of porous materials and vegetation subjected to variations of wetting, sun, wind, humidity and temperature. The model is driven by climate predictions from a mesoscale meteorological model including urban parametrisation. Building energy demand, such as cooling demand during heat waves, can be evaluated. This integrated approach not only allows for the design of adapted buildings, but also urban environments that can mitigate the negative effects of future climate change and increased urban heat islands. Mitigation solutions for urban heat island effect and heat waves, including vegetation, evaporative cooling pavements and neighbourhood morphology, are assessed in terms of pedestrian comfort and building (cooling) energy consumption.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mikhail Varentsov ◽  
Daniel Fenner ◽  
Fred Meier ◽  
Timofey Samsonov ◽  
Matthias Demuzere

Urban climate features, such as the urban heat island (UHI), are determined by various factors characterizing the modifications of the surface by the built environment and human activity. These factors are often attributed to the local spatial scale (hundreds of meters up to several kilometers). Nowadays, more and more urban climate studies utilize the concept of the local climate zones (LCZs) as a proxy for urban climate heterogeneity. However, for modern megacities that extend to dozens of kilometers, it is reasonable to suggest a significant contribution of the larger-scale factors to the temperature and UHI climatology. In this study, we investigate the contribution of local-scale and mesoscale driving factors of the nocturnal canopy layer UHI of the Moscow megacity in Russia. The study is based on air temperature observations from a dense network consisting of around 80 reference and more than 1,500 crowdsourced citizen weather stations for a summer and a winter season. For the crowdsourcing data, an advanced quality control algorithm is proposed. Based on both types of data, we show that the spatial patterns of the UHI are shaped both by local-scale and mesoscale driving factors. The local drivers represent the surface features in the vicinity of a few hundred meters and can be described by the LCZ concept. The mesoscale drivers represent the influence of the surrounding urban areas in the vicinity of 2–20 km around a station, transformed by diffusion, and advection in the atmospheric boundary layer. The contribution of the mesoscale drivers is reflected in air temperature differences between similar LCZs in different parts of the megacity and in a dependence between the UHI intensity and the distance from the city center. Using high-resolution city-descriptive parameters and different statistical analysis, we quantified the contributions of the local- and mesoscale driving factors. For selected cases with a pronounced nocturnal UHI, their respective contributions are of similar magnitude. Our findings highlight the importance of taking both local- and mesoscale effects in urban climate studies for megacities into account. Furthermore, they underscore a need for an extension of the LCZ concept to take mesoscale settings of the urban environment into account.


Author(s):  
Teodoro Georgiadis

This work reports on the main physical processes that arise in the environment of the megacity from the “urban metabolism”—the complex interactions of the climate with the activities performed in the city and its built structure and texture—as well as on associated large-scale processes that generate hazards for the megacity’s inhabitants. It is estimated that in a few decades most of the world’s population will live in urban centers. Both the growth of megacities and climate change will increase the vulnerability of huge sectors of the population to climatic consequences of the urban metabolism. These include urban heat islands, pollution, and extreme weather events such as heat waves and floods. Developing policies to mitigate these threats will require integrating scientific knowledge with management skills, communication among cities about effective approaches, and taking into account residents’ needs for health and the capacity to live safely.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 118
Author(s):  
Yan Chen ◽  
Ning Zhang ◽  
Yan Zhu

City thermal discomfort conditions have been exacerbated by the rapid urbanization processes in China. High-resolution urban thermal climate simulations can help us to understand urban climate features and produce better urban designs. In this paper, a single-layer urban canopy model (UCM) combined with Landsat satellite data and high-resolution meteorological forcing data was used to simulate very-high-resolution characteristics of temperature and humidity at the urban canopy level, and the heat index at the pedestrian level was also estimated. The research shows that the National center of environmental forecasting, Oregon state university, Air force and Hydrological research lab (NOAH)-UCM model can simulate the distribution of meteorological elements for different land uses in a fine and effective manner, making it an effective approach to obtaining the fundamental data for urban climate analysis. The spatial distribution pattern of urban heat islands in Suzhou is highly consistent with urban land cover fraction. High-density and medium-density urban areas are centers of urban heat islands, and the annual number of high-temperature days and heat indices over the high-density and medium-density urban areas are markedly higher than those in low-density cities and suburbs, indicating that urban development has a significant impact on the urban thermal environment.


2018 ◽  
Vol 22 (16) ◽  
pp. 1-22 ◽  
Author(s):  
Jeff Chieppa ◽  
Austin Bush ◽  
Chandana Mitra

Abstract Classifying “urban” and “rural” environments is a challenge in understanding urban climate, specifically urban heat islands (UHIs). Stewart and Oke developed the “local climate zone” (LCZ) classification system to clarify these distinctions using 17 unique groups. This system has been applied to many areas around the world, but few studies have attempted to utilize them to detect UHI effects in smaller cities. Our aim was to use the LCZ classification system 1) to detect UHI in two small cities in Alabama and 2) to determine whether similar zones experienced similar intensity or magnitude of UHIs. For 1 week, we monitored hourly temperature in two cities, in four zones: compact low-rise, open low-rise, dense forests, and water. We found that urban zones were often warmer for overall, daytime, and nighttime temperatures relative to rural zones (from −0.1° to 2.8°C). In addition, we found that temperatures between cities in similar zones were not very similar, indicating that the LCZ system does not predict UHI intensity equally in places with similar background climates. We found that the LCZ classification system was easy to use, and we recognize its potential as a tool for urban ecologists and urban planners.


Sign in / Sign up

Export Citation Format

Share Document