Demography and Health in the Context of Climate Change

2021 ◽  
pp. 248-268
Author(s):  
Alisha Graves ◽  
Nouhou Abdoul Moumouni ◽  
Malcolm Potts

The Sahel is subject to uniquely rapid population growth—putting pressure on already scarce resources. The challenge to meet the basic needs of a rapidly growing population is compounded by the impacts of climate change. Despite the recent gains in child survival in the Sahel, three contextual factors combine to suggest that mortality rates could rise—especially among the most vulnerable populations, that is, infants and the elderly. These factors are: an ongoing protracted nutrition crisis, rapid population growth, and impacts of climate change on food production. Evidence-based population policies and large-scale investment in family planning and girls’ secondary education have the potential to curb current demographic trends, making it easier for the region to adapt to climate change and achieve long-term food security.

2011 ◽  
Vol 8 (4) ◽  
pp. 7621-7655 ◽  
Author(s):  
S. Stoll ◽  
H. J. Hendricks Franssen ◽  
R. Barthel ◽  
W. Kinzelbach

Abstract. Future risks for groundwater resources, due to global change are usually analyzed by driving hydrological models with the outputs of climate models. However, this model chain is subject to considerable uncertainties. Given the high uncertainties it is essential to identify the processes governing the groundwater dynamics, as these processes are likely to affect groundwater resources in the future, too. Information about the dominant mechanisms can be achieved by the analysis of long-term data, which are assumed to provide insight in the reaction of groundwater resources to changing conditions (weather, land use, water demand). Referring to this, a dataset of 30 long-term time series of precipitation dominated groundwater systems in northern Switzerland and southern Germany is collected. In order to receive additional information the analysis of the data is carried out together with hydrological model simulations. High spatio-temporal correlations, even over large distances could be detected and are assumed to be related to large-scale atmospheric circulation patterns. As a result it is suggested to prefer innovative weather-type-based downscaling methods to other stochastic downscaling approaches. In addition, with the help of a qualitative procedure to distinguish between meteorological and anthropogenic causes it was possible to identify processes which dominated the groundwater dynamics in the past. It could be shown that besides the meteorological conditions, land use changes, pumping activity and feedback mechanisms governed the groundwater dynamics. Based on these findings, recommendations to improve climate change impact studies are suggested.


2021 ◽  
Author(s):  
Katalin Demeter ◽  
Julia Derx ◽  
Jürgen Komma ◽  
Juraj Parajka ◽  
Jack Schijven ◽  
...  

<p><strong>Background</strong>: Rivers are important sources for drinking water supply, however, they are often impacted by wastewater discharges from wastewater treatment plants (WWTP) and combined sewer overflows (CSO). Reduction of the faecal pollution burden is possible through enhanced wastewater treatment or prevention of CSOs. Few methodological efforts have been made so far to investigate how these measures would affect the long-term treatment requirements for microbiologically safe drinking water supply under future changes.</p><p><strong>Objectives</strong>: This study aimed to apply a new integrative approach to decipher the interplay between the effects of future changes and wastewater management measures on the required treatment of river water to produce safe drinking water. We investigated scenarios of climate change and population growth, in combination with different wastewater management scenarios (i.e., no upgrades and upgrades at WWTPs, CSOs, and both). To the best of our knowledge, this is the first study to investigate this interplay. We focussed on the viral index pathogens norovirus and enterovirus and made a cross-comparison with a bacterial and a protozoan reference pathogen (Campylobacter and Cryptosporidium).</p><p><strong>Methods</strong>: We significantly extended QMRAcatch (v1.0 Python), a probabilistic-deterministic model that combines virus fate and transport modelling in the river with quantitative microbial risk assessment (QMRA). To investigate the impact of climatic changes, we used a conceptual semi-distributed hydrological model and regional climate model outputs to simulate river discharges for the period 2035 – 2049. We assumed that population growth leads to a corresponding increase in WWTP discharges. QMRAcatch was successfully calibrated and validated based on a four-year dataset of a human-associated genetic MST marker and enterovirus. The study site was the Danube in Vienna, Austria.</p><p><strong>Results</strong>: In the reference scenario, approx. 98% of the enterovirus and norovirus loads at the study site (median: 10<sup>10</sup> and 10<sup>13</sup> N/d) originated from WWTP effluent, while the remainder was via CSO events. The required log reduction value (LRV) to produce safe drinking water was 6.3 and 8.4 log<sub>10</sub> for enterovirus and norovirus. Future changes in population size, river flows and CSO events did not affect these treatment requirements, and neither did the prevention of CSOs. In contrast, in the scenario of enhanced wastewater treatment, which showed lower LRVs by 2.0 and 1.3 log<sub>10</sub>, climate-change-driven increases in CSO events had a considerable impact on the treatment requirements, as they affected the main pollution source. Preventing CSOs and installing enhanced treatment at the WWTPs together had the most significant positive effect with a reduction of LRVs by 3.9 and 3.8 log<sub>10</sub> compared to the reference scenario.</p><p><strong>Conclusions</strong>: The integrative modelling approach was successfully realised. The simultaneous consideration of source apportionment and concentrations of the reference pathogens were found crucial to understand the interplay among the effects of climate change, population growth and pollution control measures. The approach was demonstrated for a study site representing a large river impacted by WWTP and CSO discharges, but is applicable at other sites to support long term water safety planning.</p>


Author(s):  
Giovanni Andrea Cornia

This chapter reviews population trends over the last two hundred years and population projections to the end of this century. In 2100 the world population will have stabilized but its geographical distribution will have substantially changed compared to 2015. The chapter then discusses the five stages of the demographic transition, and different neo-Malthusian and non-Malthusian theories of the relation between population growth and economic development. It emphasizes in particular the effects of rapid population growth on land and resource availability, human capital formation, population quality, the accumulation of physical capital, employment, wages, and income inequality. The effects of rapid population growth rate over a given period were found to change in line with the population size and density at the beginning of the period considered.


Author(s):  
C R McInnes

The prospect of engineering the Earth's climate (geoengineering) raises a multitude of issues associated with climatology, engineering on macroscopic scales, and indeed the ethics of such ventures. Depending on personal views, such large-scale engineering is either an obvious necessity for the deep future, or yet another example of human conceit. In this article a simple climate model will be used to estimate requirements for engineering the Earth's climate, principally using space-based geoengineering. Active cooling of the climate to mitigate anthropogenic climate change due to a doubling of the carbon dioxide concentration in the Earth's atmosphere is considered. This representative scenario will allow the scale of the engineering challenge to be determined. It will be argued that simple occulting discs at the interior Lagrange point may represent a less complex solution than concepts for highly engineered refracting discs proposed recently. While engineering on macroscopic scales can appear formidable, emerging capabilities may allow such ventures to be seriously considered in the long term. This article is not an exhaustive review of geoengineering, but aims to provide a foretaste of the future opportunities, challenges, and requirements for space-based geoengineering ventures.


2016 ◽  
Vol 48 (3) ◽  
pp. 867-882 ◽  
Author(s):  
M. S. Babel ◽  
T. A. J. G. Sirisena ◽  
N. Singhrattna

Understanding long-term seasonal or annual or inter-annual rainfall variability and its relationship with large-scale atmospheric variables (LSAVs) is important for water resource planning and management. In this study, rainfall forecasting models using the artificial neural network technique were developed to forecast seasonal rainfall in May–June–July (MJJ), August–September–October (ASO), November–December–January (NDJ), and February–March–April (FMA) and to determine the effects of climate change on seasonal rainfall. LSAVs, temperature, pressure, wind, precipitable water, and relative humidity at different lead times were identified as the significant predictors. To determine the impacts of climate change the predictors obtained from two general circulation models, CSIRO Mk3.6 and MPI-ESM-MR, were used with quantile mapping bias correction. Our results show that the models with the best performance for FMA and MJJ seasons are able to forecast rainfall one month in advance for these seasons and the best models for ASO and NDJ seasons are able do so two months in advance. Under the RCP4.5 scenario, a decreasing trend of MJJ rainfall and an increasing trend of ASO rainfall can be observed from 2011 to 2040. For the dry season, while NDJ rainfall decreases, FMA rainfall increases for the same period of time.


2019 ◽  
Vol 27 (3) ◽  
pp. 295-303
Author(s):  
Pelin Kinay ◽  
Andrew P. Morse ◽  
Elmer V. Villanueva ◽  
Karyn Morrissey ◽  
Philip L. Staddon

The latest scientific advances on the impacts of climate change on the health of the elderly in East China were reviewed consulting peer-reviewed publications from 2000 to 2017. The direct impacts of climate change result from rising temperatures, heat waves, and increases in the frequency of complex extreme weather events such as windstorms, floods, and droughts. The health and social consequences of these events are far reaching, ranging from reduced labour productivity and heat-related deaths through to direct physical injury during extreme weather events, the spread of infectious diseases, and mental health effects following widespread flooding or prolonged drought. Research has indicated that climate change will have the greatest impact on vulnerable groups of people, including the elderly population. However, there is a dearth of empirical evidence, a lack of focus on vulnerable segments of the population (especially elderly), limited understanding of how health status will change in the future, and lack of acknowledgement of how different regions in China vary in terms of the consequences of climate change. The main risk in East China that climate change may exacerbate is flooding (sea level rise, coastal and riverine, flood risk). However in some regions of East China such as in the provinces of Anhui, Jiangsu, Hebei, and Shandong the biggest climate change risk is considered to be drought. Main health risks linked to climate change are evident as cardiovascular and respiratory diseases (heat stroke, exhaustion, and asthma), often caused by interactions between heat wave episodes and concurrent poor air quality.


Sign in / Sign up

Export Citation Format

Share Document