A Low-Moisture-Content Limit to Logarithmic Relations Between Seed Moisture Content and Longevity

1988 ◽  
Vol 61 (4) ◽  
pp. 405-408 ◽  
Author(s):  
R. H. ELLIS ◽  
T. D. HONG ◽  
E. H. ROBERTS
2001 ◽  
Vol 1 (2) ◽  
pp. 119 ◽  
Author(s):  
S.O. Nelson ◽  
S. Trabelsi ◽  
A.W. Kraszewski

2007 ◽  
Vol 47 (6) ◽  
pp. 683 ◽  
Author(s):  
Pippa J. Michael ◽  
Kathryn J. Steadman ◽  
Julie A. Plummer

Seed development was examined in Malva parviflora. The first flower opened 51 days after germination; flowers were tagged on the day that they opened and monitored for 33 days. Seeds were collected at 12 stages during this period and used to determine moisture content, germination of fresh seeds and desiccation tolerance (seeds dried to 10% moisture content followed by germination testing). Seed moisture content decreased as seeds developed, whereas fresh (max. 296 mg) and dry weight (max. 212 mg) increased to peak at 12–15 and ~21 days after flowering (DAF), respectively. Therefore, physiological maturity occurred at 21 DAF, when seed moisture content was 16–21%. Seeds were capable of germinating early in development, reaching a maximum of 63% at 9 DAF, but germination declined as development continued, presumably due to the imposition of physiological dormancy. Physical dormancy developed at or after physiological maturity, once seed moisture content declined below 20%. Seeds were able to tolerate desiccation from 18 DAF; desiccation hastened development of physical dormancy and improved germination. These results provide important information regarding M. parviflora seed development, which will ultimately improve weed control techniques aimed at preventing seed set and further additions to the seed bank.


1987 ◽  
Vol 27 (1) ◽  
pp. 179 ◽  
Author(s):  
MA Siddique ◽  
G Somerset ◽  
PB Goodwin

Trials on the cultivars Canyon and Gallatin 50 in 1978 and Cascade in 1979 were run in North Queensland to examine ways of improving seed quality of snap beans. The trials concentrated on the maturation period, since this is a critical period for the development of seed quality. We found that seed quality was poor when the crop was cut at the stage when the leaves had fallen and all the pods were dry, or if the plants were cut at any stage and allowed to dry on the ground in single rows. This poor seed quality was associated with high pod temperatures during seed maturation. Cutting the crop before leaf fall, at a seed moisture content close to 50% (20-40% of pods dry) and windrowing immediately in 5 or 10 rows to 1 windrow gave low pod temperatures during seed maturation and high seed quality. Seed harvested and threshed directly off the crop was of good quality provided the seed moisture content in the crop had fallen to less than 25%.


2020 ◽  
Vol 11 (3) ◽  
pp. 199-205
Author(s):  
Arum Sekar Wulandari ◽  
Afrida Rizka Farzana

The presence of Pericopsis mooniana (Thw.) Thw. in nature is endangered. Meanwhile, Pericopsis mooniana plants have its obstacles in generative propagation because the seeds have mechanical dormancy. Studies carried out to: (1) observe the morphology of pods, seeds and sprouts of Pericopsis mooniana; (2) determine the physical quality of Pericopsis mooniana seeds, and (3) analyze the proper dormancy breaking treatment for Pericopsis mooniana seeds. Research is conducted in laboratories and in greenhouses. The physical quality of the seeds measured was the weight of 1,000 seeds and the moisture content. The treatment for breaking the dormancy of the Pericopsis mooniana seeds were control, scarification of the seeds using nail clippers and soaking in hot to cold water for 48 hours. Morphologically, the fruit of Pericopsis mooniana is pod-shaped, with orange seeds, oval-shaped and curved edges. Pericopsis mooniana sprouts include in the epigeal type. In 1 kg of weight there are ± 4,000 Pericopsis mooniana seeds, with the post harvest seed moisture content amounting to 7.62%. The dormancy breaking treatment of Pericopsis mooniana seeds increased seeds germination by 60% compared to controls. The scarification of Pericopsis mooniana seeds using nail clippers for breaking mechanical dormancy is the best treatment because it can increase the number of seeds germinating in a short time and simultaneously. Key words: breaking seed dormancy, morphology, Pericopsis mooniana, physical quality, seed scarificatio


2011 ◽  
Vol 79 (1) ◽  
pp. 21-25
Author(s):  
Agnieszka I. Piotrowicz-Cieślak ◽  
Maciej Niedzielski ◽  
Dariusz J. Michalczyk ◽  
Wiesław Łuczak ◽  
Barbara Adomas

Germinability and the content of soluble carbohydrates were analysed in cereal seed (winter rye, cv. Warko; spring wheat, cv. Santa; hexaploid winter triticale, cv. Fidelio and cv. Woltario). Seed moisture content (mc) was equilibrated over silica gel to 0.08 g H<sub>2</sub>O/g dry mass and stored in a desiccator at 20<sup>o</sup>C for up to 205 weeks or were equilibrated to mc 0.06, 0.08 or 0.10 g H<sub>2</sub>O/g dm and subjected to artificial aging at 35<sup>o</sup>C in air-tight laminated aluminium foil packages for 205 weeks. It was shown that the rate of seed aging depended on the species and seed moisture content. The fastest decrease of germinability upon storage was observed in seed with the highest moisture level. Complete germinability loss for winter rye, winter triticale cv. Fidelio, winter triticale cv. Woltario and spring wheat seed with mc 0.10 g H<sub>2</sub>O/g dm<sup>3</sup> occurred after 81, 81, 101 and 133 weeks, respectively. Fructose, glucose, galactose, myo-inositol, sucrose, galactinol, raffinose, stachyose and verbascose were the main soluble carbohydrates found in the seed. The obtained data on the contents of specific sugars and the composition of soluble sugars fraction in seed of rye, wheat and triticale did not corroborate any profound effect of reducing sugars, sucrose and oligosaccharides on seed longevity.


2017 ◽  
Vol 50 (4) ◽  
pp. 5-16
Author(s):  
F. Shahbazi

AbstractMechanical damage of seeds due to harvest, handling and other process is an important factor that affects the quality and quaintly of seeds. The objective of this research was to determine the effects of moisture content and the impact energy on the breakage susceptibility of vetch seeds. The experiments were conducted at moisture contents of 7.57 to 25% (wet basis) and at the impact energies of 0.1, 0.2 and 0.3 J, using an impact damage assessment device. The results showed that impact energy, moisture content, and the interaction effects of these two variables significantly influenced the percentage breakage in vetch seeds (p<0.01). Increasing the impact energy from 0.1 to 0.3 J caused a significant increase in the mean values of seeds breakage from 41.69 to 78.67%. It was found that the relation between vetch seeds moisture content and seeds breakage was non-linear, and the extent of damaged seeds decreased significantlyas a polynomial (from 92.47 to 33.56%) with increasing moisture (from 7.57 to 17.5%) and reached a minimum at moisture level of about 17.5%. Further increase in seed moisture, however, caused an increase in the amount of seeds breakage. Mathematical relationships composed of seed moisture content and impact energy, were developed for accurately description the percentage breakage of vetch seeds under impact loading. It was found that the models have provided satisfactory results over the whole set of values for the dependent variable.


2017 ◽  
Vol 39 (4) ◽  
pp. 410-416 ◽  
Author(s):  
Lara Bernardes da Silva Ferreira ◽  
Nayara Alves Fernandes ◽  
Luan Costa de Aquino ◽  
Anderson Rodrigo da Silva ◽  
Warley Marcos Nascimento ◽  
...  

Abstract: Several factors affect the electrical conductivity test efficiency, with emphasis given to the initial water content and the temperature during imbibition. This study aimed to evaluate the effect of the initial water content of pea seeds and the temperature on the electrical conductivity test efficiency. Six lots of ‘Mikado’ pea were used, which were previously tested for initial characterization. In the first trial, based on the initial value of the samples, the seed moisture content was adjusted to 9, 11, 13 and 15% and then the seeds were submitted to the electrical conductivity test. In the second trial, the water for seed imbibition was kept for 24 hours at 10, 15, 20, 25 and 30 ºC, and after that time the seeds were added and soaked for other 24 hours at the temperatures already mentioned. It was observed that initial seed moisture content and water temperature during imbibition influenced the results of the electrical conductivity test. This test should be carried out with distilled water, previously maintained for 24 hours at 25 °C for temperature stabilization. Then, the seeds with seed moisture content between 11 and 15% should be put to soak at 25 °C, and maintained at this temperature for 24 hours.


Sign in / Sign up

Export Citation Format

Share Document